

- Unit 1: Bayes Rule, Approximate Inference, Hyperparameters
- Unit 2: Gaussian Processes, Covariance Function, Kernel
- Unit 3: GP: Regression
- Unit 4: GP: Classification
- Unit 5: Implementation: Laplace Approximation, Low Rank Methods
- Unit 6: Implementation: Low Rank Methods, Bayes Committee Machine
- Unit 7: Relevance Vector Machine: Priors on Coefficients
- Unit 8: Relevance Vector Machine: Efficient Optimization and Extensions

$\tt http://mlg.anu.edu.au/{\sim}smola/summer2002/$

Overview of Unit 1: Bayesics

- 01: Parametric Density Models
- 02: Maximum Likelihood
- 03: Example: Mean and Variance
- 04: Bayes' Rule and Conditional Probabilities
- 05: Example: Unfair Jury
- 06: Priors
- 07: Example: Prior on Function Space
- 08: Bayesian Inference
- 09: Confidence Intervals
- 10: Problems with Exact Inference
- 11: Maximum a Posteriori Approximation
- 12: Laplace Approximation for Confidence Intervals
- 13: Relation to Regularized Risk Functional
- 14: Hyperparameters
- 15: MAP2 Approximation
- 16: To integrate or not to integrate

- **Goal:** We want to estimate the density of a random variable, say, \mathbf{x} , given a set of observations $X := {\mathbf{x}_1, \ldots, \mathbf{x}_m}$.
- **Problem:** Without additional knowledge, this is very difficult (and we need lots of data).
- "Solution:" Assume a lot about $p(\mathbf{x})$ and X.
- Assumption 1: The set X has been obtained by drawing independent identically distributed samples from $p(\mathbf{x})$.
 - This assumption will hold throughout the lectures.

It follows that
$$p(X) = p(\mathbf{x}_1, \dots, \mathbf{x}_m) = \prod_{i=1}^m p(\mathbf{x}_i)$$

Assumption 2: The density $p(\mathbf{x})$ can be parameterized by θ , that is $p(\mathbf{x}) = p(\mathbf{x}|\theta)$. **Caution:** We should write $p_{\theta}(\mathbf{x})$ to indicate that $p(\mathbf{x})$ is **parameterized** by θ , rather than the density of \mathbf{x} , given θ . But it will be useful later ...

Inference Principle: Find θ such that $p(X|\theta)$ is maximized. This means maximizing

$$p(X|\theta) = \prod_{i=1}^{m} p(\mathbf{x}_i|\theta) \text{ or equivalently } \log p(X|\theta) = \sum_{i=1}^{m} \log p(\mathbf{x}_i|\theta).$$

Likelihood: $p(X|\theta)$ as a **function of** θ is commonly referred to as the likelihood $\mathcal{L}(\theta)$. Thereby we can find the parameter θ that is most plausible given X by maximizing $\mathcal{L}(\theta)$.

Numerical Trick: Typically we minimize $-\log \mathcal{L}$, that is, we minimize $\sum_{i=1}^{m} -\log p(\mathbf{x}_i|\theta)$

- Note: Similarity to training error for regularized risk, here the error per observation corresponds to $-\log(x_i|\theta)$.
- **Problem 1:** The maximum value of \mathcal{L} can be misleading, since $p(\mathbf{x}|\theta)$ may not be the right model (**approximation error**).
- **Problem 2:** We may not have enough data to adjust θ properly, so the maximum value of \mathcal{L} may be misleadingly **high**.

Example: Mean and Variance

Normal Distribution: Estimate parameters $\theta := (\mu, \sigma^2)$ for a normal distribution

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right)$$

Negative Log-Likelihood:

$$-\log \mathcal{L}(\mu, \theta) = -\frac{m}{2}\log 2\pi - m\log \sigma + \frac{1}{2\sigma^2}\sum_{i=1}^{m} (x_i - \mu)^2$$

Optimum for μ : (we assume $\sigma^2 \neq 0$)

$$\partial_{\mu} - \log \mathcal{L}(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^m x_i - \mu = 0 \iff \mu = \frac{1}{m} \sum_{i=1}^m x_i.$$

Optimum for σ^2 : (we assume $\sigma^2 \neq 0$)

$$\partial_{\sigma} - \log \mathcal{L}(\mu, \sigma^2) = -\frac{m}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^m = 0 \iff \sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_i)^2.$$

Bayes' Rule and Conditional Probabilities

- **Joint Probability:** Pr(X, Y) is the probability of the events X and Y occurring simultaneously.
- **Conditional Probability:** Pr(X|Y) is the probability of the event X, given Y.
- **Bayes Rule:** Joint and Conditional Probability are related by Pr(X, Y) = Pr(X|Y) Pr(Y). We may therefore expand Pr(X, Y) in X and Y to obtain

$$\Pr(X|Y) = \frac{\Pr(Y|X)\Pr(X)}{\Pr(Y)}$$

Joint Density: $Pr(\mathbf{x}, \mathbf{y})$ is the density of the events \mathbf{x} and \mathbf{y} occurring simultaneously.

Conditional Density: $Pr(\mathbf{x}|\mathbf{y})$ is the density of the event \mathbf{x} , given \mathbf{y} .

Bayes Rule: Joint and Conditional Density are related by

 $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ and therefore $p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$.

Examples

AIDS-Test:

We want to find out likely it is that a patient *really* has AIDS (denoted by X) if the test is positive (denoted by Y).

Roughly 0.1% of all Australians are infected $(\Pr(X) = 0.001)$. The probability that an AIDS test tells us the wrong result is in the order of 1% $(\Pr(Y|X \setminus X) = 0.01)$ and moreover we assume that it detects all infections $(\Pr(Y|X) = 1)$. We have

$$\Pr(X|Y) = \frac{\Pr(Y|X) \Pr(X)}{\Pr(Y)} = \frac{\Pr(Y|X) \Pr(X)}{\Pr(Y|X) \Pr(X) + \Pr(Y|X \setminus X) \Pr(X \setminus X)}$$

Hence $\Pr(X|Y) = \frac{1 \cdot 0.001}{1 \cdot 0.001 + 0.01 \cdot 0.999} = 0.091$, i.e. the probability of AIDS is 9.1%!

Reliability of Eye-Witness:

Assume that an eye-witness is 90% sure and that there were 20 people at the crime scene, what is the probability that the guy identified committed the crime? $\Pr(X|Y) = \frac{0.9 \cdot 0.05}{0.9 \cdot 0.05 + 0.1 \cdot 0.95} = 0.3213 = 32\%$ that's a worry ...

Idea 1

Quite often we have a rough idea of what function we can expect beforehand.

- We observe similar functions in practice.
- We **think** that e.g. smooth functions should be more likely.
- We **would like** a certain type of functions.
- We have **prior knowledge** about specific properties, e.g. vanishing second derivative, etc.

Idea 2

We have to specify somehow, how likely it is to observe a specific function f from an overall class of functions. This is done by assuming some density p(f) describing how likely we are to observe f.

Speech Signal

We know that the signal is bandlimited, hence any signal containing frequency components above 10kHz has density 0.

Parametric Prior

We may know that f is a linear combination of $\sin x$, $\cos x$, $\sin 2x$, and $\cos 2x$ and that the coefficients may be chosen from the interval [-1, 1].

$$p(f) = \begin{cases} \frac{1}{16} & \text{if } f = \alpha_1 \sin x + \alpha_2 \cos x + \alpha_3 \sin 2x + \alpha_4 \cos 2x \text{ with } \alpha_i \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}$$

Prior on Function Values

We assume that there is a correlation between the function values f_i at location $f(\mathbf{x}_i)$. There we have

$$p(f_1, f_2, f_3) = \frac{1}{\sqrt{(2\pi)^3 \det K}} \exp\left(-\frac{1}{2}(f_1, f_2, f_3)^\top K^{-1}(f_1, f_2, f_3)\right).$$

Applying Bayes Rule:

We want to infer the probability of f, having observed X, Y. By Bayes' rule we obtain

$$p(f|X,Y) = \frac{p(Y|f,X)p(f|X)}{p(Y|X)} \propto p(Y|f,X)p(f|X).$$

This is also often called the **posterior probability** of observing f, after that the data X, Y arrived.

Usual Assumption:

•

Typically we assume that X has no influence as to which f we may assume, i.e. p(f|X) = p(f) (X and f are independent random variables).

Prediction: Given p(f|X, Y) we can predict $f(\mathbf{x})$ via

$$\int f(\mathbf{x})p(f|X,Y)df = \frac{1}{Z} \int f(\mathbf{x})p(Y|f,X)dp(f) \text{ where } Z = \int p(Y|f,X)dp(f)$$

Confidence

Variance:

Likewise, to infer the predictive variance we compute

$$\mathbf{E}\left[\left(f(\mathbf{x}) - \mathbf{E}[f(\mathbf{x})]\right)^2\right] = \int \left(f(\mathbf{x}) - \mathbf{E}[f(\mathbf{x})]\right)^2 p(f|X, Y) df$$

This means that we can estimate the variation of $f(\mathbf{x})$, given the data and our prior knowledge about f, as encoded by p(f).

Problems with Exact Inference

Problem

Nobody wants to compute integrals, because ...

- Computing integrals is expensive
- No closed form possible
- Not very intuitive for inference

Idea

After all, we are only **averaging**, so replace the mean of the distribution by the mode and hope that it will be ok. This leads to the maximum a posteriori estimate (see next slide).

Problem

Error bars are really hard to obtain.

Idea

Approximate p(f|X, Y) by a normal distribution (Laplace Approximation).

Maximizing the Posterior Probability

To find the hypothesis f with the highest posterior probability we have to maximize

$$p(f|X,Y) = \frac{p(Y|f,X)p(f|X)}{p(Y|X)}$$

Lazy Trick

Since we only want f (and p(Y|X) is independent of f), all we have to do is maximize p(Y|f, X)p(f).

Taking Logs

For convenience we get f by minimizing

 $-\log p(Y|f,X)p(f|X) = -\log p(Y|f,X) - \log p(f) = -\log \mathcal{L} - \log p(f)$

So all we are doing is to **reweight the likelihood** by $-\log p(f)$. This looks suspiciously like the regularization term. We will match up the two terms later.

Laplace Approximation for Confidence Intervals

Variance

Once we found the **mode** f_0 of the distribution, we might as well approximate the variance by approximating p(f|X, Y) with a normal distribution around f_0 . This is done by computing the second order information at f_0 , i.e. $\partial_f^2 - \log p(f|X, Y)$.

Recycling of the Likelihood

Match up terms between likelihood and loss function $c(\mathbf{x}, y, f(\mathbf{x}))$. In particular, we recycle these terms:

$$c(\mathbf{x}, y, f(\mathbf{x})) \equiv -\log p(y - f(\mathbf{x}))$$
$$p(y|f(\mathbf{x}) \equiv \exp(-c(\mathbf{x}, y, f(\mathbf{x})))$$

Now all we have to do is take care of the regularizer $m\lambda\Omega[f]$ and $-\log p(f)$.

Regularizer and Prior

The correspondence

 $m\lambda\Omega[f] + c = -\log p(f)$ or equivalently $p(f) \propto \exp(-m\lambda\Omega[f])$

is the link between regularizer $\Omega[f]$ and prior p(f).

Caveat

The translation from regularizer into prior works only to some extent, since the integral over f need not converge.

Sometimes we are not quite sure about the type of prior p(f) we might have, e.g., the variance of some parameters . . .

Solution

Put a **prior** on the parameters governing the prior. Instead of p(f) we now have $p(f|\omega)$ and a prior $p(\omega)$ on the **hyperparameter** ω .

Effective Prior: We can obtain the effective prior by integrating out the hyperparameter

$$p(f) = \int p(f|\omega) p(\omega) d\omega$$

Inference

Using the effective prior for p(f|X,Y) (and the assumption p(f|X) = p(f)) we obtain $p(f|X,Y) \propto p(Y|f,X)p(f) = p(Y|f,X) \int p(f|X,\omega)p(\omega)d\omega$.

Problem: Nobody wants to compute integrals, because ...

- Computing integrals is expensive
- No closed form possible
- Not very intuitive for inference

Idea

After all, we are only **averaging**, so replace the mean of the distribution by the mode and hope that it will be ok. This leads to the **maximum a posteriori** estimate on the hyperparameter.

Result

$$\begin{array}{l} \underset{f,\omega}{\text{maximize }} p(f|X,Y) \propto p(Y|f,X)p(f|\omega)p(\omega) \\ \hline \textbf{Practical Trick} \\ \underset{f,\omega}{\text{minimize }} -\log \underbrace{p(Y|f,X)}_{\text{Likelihood}} -\log \underbrace{p(f|\omega)}_{\text{Prior}} -\log \underbrace{p(\omega)}_{\text{Hyperprior}} \end{array}$$

Integrate

- This is what you need to do for proper inference
- Fewer Parameters
- p(f) may be of a simpler functional form than $p(f|\omega)p(\omega)$, e.g.,

$$p(a|\omega) = (2\pi\omega^2)^{-\frac{1}{2}}e^{-\frac{a^2}{2\omega^2}}$$
 and $p(\omega) = (2\pi)^{-\frac{1}{2}}e^{-\frac{\omega^2}{2}}$ hence $p(a) = \frac{1}{2\pi}$ BesselK(0, |a|).

Don't Integrate

- Sometimes easier to optimize (convex optimization problem or simple one-dimensional minimization which can be solved explicitly).
- MAP1 part may become exact (for fixed hyperparameter we have a Gaussian posterior).
- p(f) may be of a simpler functional form than $p(f|\omega)p(\omega)$, e.g., if in the example above $p(\omega) = \frac{1}{2}\exp(-|\omega|)$, then p(f) is really complicated ...

To integrate or not to integrate

