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Parametric Density Models

Goal: We want to estimate the density of a random variable, say, x, given a set of

observations X := {x1, . . . ,xm}.
Problem: Without additional knowledge, this is very difficult (and we need lots of

data).

“Solution:” Assume a lot about p(x) and X .

Assumption 1: The set X has been obtained by drawing independent identi-

cally distributed samples from p(x).

This assumption will hold throughout the lectures.

It follows that p(X) = p(x1, . . . ,xm) =

m∏
i=1

p(xi)

Assumption 2: The density p(x) can be parameterized by θ, that is p(x) = p(x|θ).

Caution: We should write pθ(x) to indicate that p(x) is parameterized by θ, rather

than the density of x, given θ. But it will be useful later . . .
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Maximum Likelihood

Inference Principle: Find θ such that p(X|θ) is maximized. This means maximizing

p(X|θ) =

m∏
i=1

p(xi|θ) or equivalently log p(X|θ) =

m∑
i=1

log p(xi|θ).

Likelihood: p(X|θ) as a function of θ is commonly referred to as the likelihood

L(θ). Thereby we can find the parameter θ that is most plausible given X by

maximizing L(θ).

Numerical Trick: Typically we minimize− log L, that is, we minimize
∑m

i=1− log p(xi|θ).

Note: Similarity to training error for regularized risk, here the error per observation

corresponds to − log(xi|θ).

Problem 1: The maximum value of L can be misleading, since p(x|θ) may not be the

right model (approximation error).

Problem 2: We may not have enough data to adjust θ properly, so the maximum

value of L may be misleadingly high.
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Example: Mean and Variance

Normal Distribution: Estimate parameters θ := (µ, σ2) for a normal distribution

p(x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

σ2

)
Negative Log-Likelihood:

− log L(µ, θ) = −m
2

log 2π −m log σ +
1

2σ2

m∑
i=1

(xi − µ)2

Optimum for µ: (we assume σ2 6= 0)

∂µ − log L(µ, σ2) =
1

σ2

m∑
i=1

xi − µ = 0⇐⇒ µ =
1

m

m∑
i=1

xi.

Optimum for σ2: (we assume σ2 6= 0)

∂σ − log L(µ, σ2) = −m
σ

+
1

σ3

m∑
i=1

= 0⇐⇒ σ2 =
1

m

m∑
i=1

(xi − µi)2.
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Bayes’ Rule and Conditional Probabilities

Joint Probabilitiy: Pr(X, Y ) is the probability of the events X and Y occurring

simultaneously.

Conditional Probabilitiy: Pr(X|Y ) is the probability of the event X , given Y .

Bayes Rule: Joint and Conditional Probability are related by Pr(X, Y ) = Pr(X|Y ) Pr(Y ).

We may therefore expand Pr(X, Y ) in X and Y to obtain

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )

Joint Density: Pr(x,y) is the density of the events x and y occurring simultaneously.

Conditional Density: Pr(x|y) is the density of the event x, given y.

Bayes Rule: Joint and Conditional Density are related by

p(x,y) = p(x|y)p(y) and therefore p(x|y) =
p(y|x)p(x)

p(y)
.
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Examples

AIDS-Test:

We want to find out likely it is that a patient really has AIDS (denoted by X) if

the test is positive (denoted by Y ).

Roughly 0.1% of all Australians are infected (Pr(X) = 0.001). The probability that

an AIDS test tells us the wrong result is in the order of 1% (Pr(Y |X\X) = 0.01)

and moreover we assume that it detects all infections (Pr(Y |X) = 1). We have

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )
=

Pr(Y |X) Pr(X)

Pr(Y |X) Pr(X) + Pr(Y |X\X) Pr(X\X)

Hence Pr(X|Y ) = 1·0.001
1·0.001+0.01·0.999 = 0.091, i.e. the probability of AIDS is 9.1%!

Reliability of Eye-Witness:

Assume that an eye-witness is 90% sure and that there were 20 people at the crime

scene, what is the probability that the guy identified committed the crime?

Pr(X|Y ) =
0.9 · 0.05

0.9 · 0.05 + 0.1 · 0.95
= 0.3213 = 32% that’s a worry . . .
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Priors

Idea 1

Quite often we have a rough idea of what function we can expect beforehand.

•We observe similar functions in practice.

•We think that e.g. smooth functions should be more likely.

•We would like a certain type of functions.

•We have prior knowledge about specific properties, e.g. vanishing second

derivative, etc.

Idea 2

We have to specify somehow, how likely it is to observe a specific function f from

an overall class of functions. This is done by assuming some density p(f ) describing

how likely we are to observe f .
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Example: Prior on Function Space

Speech Signal

We know that the signal is bandlimited, hence any signal containing frequency com-

ponents above 10kHz has density 0.

Parametric Prior

We may know that f is a linear combination of sin x, cos x, sin 2x, and cos 2x and

that the coefficients may be chosen from the interval [−1, 1].

p(f ) =

{
1
16 if f = α1 sinx + α2 cos x + α3 sin 2x + α4 cos 2x with αi ∈ [−1, 1]

0 otherwise

Prior on Function Values

We assume that there is a correlation between the function values fi at location

f (xi). There we have

p(f1, f2, f3) =
1√

(2π)3 detK
exp

(
−1

2
(f1, f2, f3)>K−1(f1, f2, f3)

)
.
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Bayesian Inference

Applying Bayes Rule:

We want to infer the probability of f , having observed X, Y . By Bayes’ rule we

obtain

p(f |X, Y ) =
p(Y |f,X)p(f |X)

p(Y |X)
∝ p(Y |f,X)p(f |X).

This is also often called the posterior probability of observing f , after that the

data X, Y arrived.

Usual Assumption:

Typically we assume that X has no influence as to which f we may assume, i.e.

p(f |X) = p(f ) (X and f are independent random variables).

Prediction: Given p(f |X, Y ) we can predict f (x) via∫
f (x)p(f |X, Y )df =

1

Z

∫
f (x)p(Y |f,X)dp(f ) where Z =

∫
p(Y |f,X)dp(f )
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Confidence

Variance:

Likewise, to infer the predictive variance we compute

E
[
(f (x)− E[f (x)])2

]
=

∫
(f (x)− E[f (x)])2 p(f |X, Y )df

This means that we can estimate the variation of f (x), given the data and our prior

knowledge about f , as encoded by p(f ).
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Problems with Exact Inference

Problem

Nobody wants to compute integrals, because . . .

• Computing integrals is expensive

• No closed form possible

• Not very intuitive for inference

Idea

After all, we are only averaging, so replace the mean of the distribution by the

mode and hope that it will be ok. This leads to the maximum a posteriori estimate

(see next slide).

Problem

Error bars are really hard to obtain.

Idea

Approximate p(f |X, Y ) by a normal distribution (Laplace Approximation).
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Maximum a Posteriori Approximation

Maximizing the Posterior Probability

To find the hypothesis f with the highest posterior probability we have to maximize

p(f |X, Y ) =
p(Y |f,X)p(f |X)

p(Y |X)

Lazy Trick

Since we only want f (and p(Y |X) is independent of f ), all we have to do is maximize

p(Y |f,X)p(f ).

Taking Logs

For convenience we get f by minimizing

− log p(Y |f,X)p(f |X) = − log p(Y |f,X)− log p(f ) = − log L− log p(f )

So all we are doing is to reweight the likelihood by − log p(f ). This looks

suspiciously like the regularization term. We will match up the two terms later.
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Laplace Approximation for Confidence Intervals

Variance

Once we found the mode f0 of the distribution, we might as well approximate the

variance by approximating p(f |X, Y ) with a normal distribution around f0.

This is done by computing the second order information at f0, i.e. ∂2
f−log p(f |X, Y ).
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Relation to Regularized Risk Functional

Recycling of the Likelihood

Match up terms between likelihood and loss function c(x, y, f(x)). In particular, we

recycle these terms:

c(x, y, f(x)) ≡ − log p(y − f (x))

p(y|f (x) ≡ exp(−c(x, y, f(x))

Now all we have to do is take care of the regularizer mλΩ[f ] and − log p(f ).

Regularizer and Prior

The correspondence

mλΩ[f ] + c = − log p(f ) or equivalently p(f ) ∝ exp(−mλΩ[f ])

is the link between regularizer Ω[f ] and prior p(f ).

Caveat

The translation from regularizer into prior works only to some extent, since the

integral over f need not converge.
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Hyperparameters

Problem

Sometimes we are not quite sure about the type of prior p(f ) we might have, e.g.,

the variance of some parameters . . .

Solution

Put a prior on the parameters governing the prior. Instead of p(f ) we now have

p(f |ω) and a prior p(ω) on the hyperparameter ω.

Effective Prior: We can obtain the effective prior by integrating out the hyperpa-

rameter

p(f ) =

∫
p(f |ω)p(ω)dω

Inference

Using the effective prior for p(f |X, Y ) (and the assumption p(f |X) = p(f )) we

obtain p(f |X, Y ) ∝ p(Y |f,X)p(f ) = p(Y |f,X)

∫
p(f |X,ω)p(ω)dω.
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MAP2 Approximation

Problem: Nobody wants to compute integrals, because . . .

• Computing integrals is expensive

• No closed form possible

• Not very intuitive for inference

Idea

After all, we are only averaging, so replace the mean of the distribution by the

mode and hope that it will be ok. This leads to the maximum a posteriori

estimate on the hyperparameter.

Result

maximize
f,ω

p(f |X, Y ) ∝ p(Y |f,X)p(f |ω)p(ω)

Practical Trick

minimize
f,ω

− log p(Y |f,X)︸ ︷︷ ︸
Likelihood

− log p(f |ω)︸ ︷︷ ︸
Prior

− log p(ω)︸︷︷︸
Hyperprior
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To integrate or not to integrate

Integrate

• This is what you need to do for proper inference

• Fewer Parameters

• p(f ) may be of a simpler functional form than p(f |ω)p(ω), e.g.,

p(a|ω) = (2πω2)−
1
2e
− a2

2ω2 and p(ω) = (2π)−
1
2e−

ω2

2 hence p(a) =
1

2π
BesselK(0, |a|).

Don’t Integrate

• Sometimes easier to optimize (convex optimization problem or simple one-dimensional

minimization which can be solved explicitly).

•MAP1 part may become exact (for fixed hyperparameter we have a Gaussian

posterior).

• p(f ) may be of a simpler functional form than p(f |ω)p(ω), e.g., if in the example

above p(ω) = 1
2 exp(−|ω|), then p(f ) is really complicated . . .
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To integrate or not to integrate
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