(Stochastic) Gradient Descent

Empirical Risk Functional
$$R_{emp}[f] = \frac{1}{m} \sum_{i=1}^{m} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$$

Idea 1

Minimize $R_{\rm emp}[f]$ by performing gradient descent. This leads to

$$f \to f - \frac{\Lambda}{m} \sum_{i=1}^{m} \partial_f c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$$

Problem

This may be expensive. If the observations are similar, this is very wasteful.

Idea 2

Minimize $R_{\text{emp}}[f]$ by performing stochastic gradient descent over the individual terms under the sum.

Stochastic Gradient $f \to f - \Lambda \partial_f c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$

Linear Model w
$$\rightarrow$$
 w $- \Lambda \mathbf{x}_i c'(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$

Perceptron Algorithm for Squared Loss

```
Training sample, \{\mathbf x_1,\dots,\mathbf x_m\}\subset \mathfrak X, \{y_1,\dots,y_m\}\subset \{\pm 1\}, \eta
argument:
                       Weight vector \mathbf{w} and threshold b.
returns:
function Perceptron (X, Y, \eta)
     initialize \mathbf{w}, b = 0
     repeat
             for all i from i = 1, \ldots, m
                      Compute f(\mathbf{x}_i) = \left(\left\langle \sum_{l=1}^i \alpha_l \Phi(x_l), \Phi(\mathbf{x}_i) \right\rangle + b\right)
                       Update \mathbf{w}, b according to \mathbf{w}' = \mathbf{w} + \eta \alpha_i \Phi(\mathbf{x}_i) and b' = b + \eta \alpha_i
                       where \alpha_i = y_i - f(\mathbf{x}_i)
             endfor
     until for all 1 \leq i \leq m we have g(\mathbf{x}_i) = y_i
     return f: \mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + b
end
```


Perceptron Algorithm for Huber's Loss

```
argument: Training sample, \{\mathbf x_1,\ldots,\mathbf x_m\}\subset \mathfrak X, \{y_1,\ldots,y_m\}\subset \{\pm 1\}, \eta
returns:
                          Weight vector \mathbf{w} and threshold b.
function Perceptron (X, Y, \eta)
      initialize \mathbf{w}, b = 0
      repeat
               for all i from i = 1, \ldots, m
                          Compute f(\mathbf{x}_i) = \left(\left\langle \sum_{l=1}^i \alpha_l \Phi(x_l), \Phi(\mathbf{x}_i) \right\rangle + b\right)
                          Update \mathbf{w}, b according to \mathbf{w}' = \mathbf{w} + \eta \alpha_i \Phi(\mathbf{x}_i) and b' = b + \eta \alpha_i
                         where \alpha_i = \begin{cases} \frac{1}{\sigma}(y_i - f(\mathbf{x}_i)) & \text{for } |y_i - f(\mathbf{x}_i)| \leq \sigma \\ \operatorname{sgn}(y_i - f(\mathbf{x}_i)) & \text{otherwise} \end{cases}
               endfor
      until for all 1 \leq i \leq m we have g(\mathbf{x}_i) = y_i
      return f: \mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + b
end
```

Learning Rate

Classification

For classification, the absolute value of f does not matter. So we need not adjust the learning rate.

Regression

The absolute value of f is crucial, so we have to get η right.

- Large η : we get quick initial convergence to the target but large fluctuations remain (stochastic gradient can be very noisy).
- Small η : slow initial convergence to the target but we have a much better quality estimate in the later stages.

Trick

Make η a variable of the time. One can show that $\eta(t) = O(t^{-1})$ is optimal in many cases. This yields quick initial convergence and low fluctuations later.

Warning

If f is fluctuating, choosing η too small will not be useful.

Maximum Likelihood and Noise Models

Basic Idea

We assume that the observations y_i are derived from $f(\mathbf{x}_i)$ by adding noise, i.e. $y_i = f(\mathbf{x}_i) + \xi_i$ where ξ_i is a random variable with density $p(\xi_i)$.

This also means that once we know the type of noise we are dealing with, we may compute conditional densities $p(y|\mathbf{x})$ under the model assumptions.

Likelihood
$$p(Y|f,X) = p((y_1 - f(\mathbf{x}_1)), \dots, (y_m, f(\mathbf{x}_m)))$$

We make the assumption of iid data (to keep the equations simple). This leads to the likelihood

$$\mathcal{L} = \prod_{i=1}^{m} p(y_i - f(\mathbf{x}_i))$$

Caveat

The estimates we obtain are only as good as our initial assumptions regarding the type of function expansion and noise. This means that we may not take p(Y|X) at book value.

Log-Likelihood and Loss Function

Idea

Log likelihhood and loss function look suspiciously similar, maybe we can find a link For simplicity we assume that the that is generated iid.

Comparison

$$-\log \mathcal{L}[f] = \sum_{i=1}^{m} -\log p(y_i - f(\mathbf{x}_i))$$

$$R_{\text{emp}}[f] = \frac{1}{m} \sum_{i=1}^{m} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$$

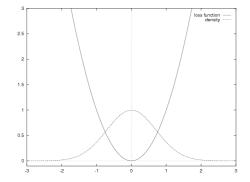
Idea

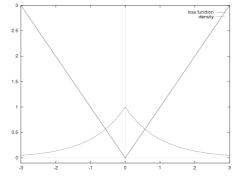
The two terms differ only by a scaling constant which is irrelevant for minimization purposes. So we match up the terms.

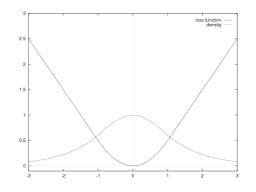
$$c(\mathbf{x}, y, f(\mathbf{x})) \equiv -\log p(y - f(\mathbf{x}))$$

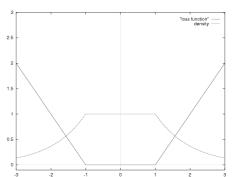
 $p(y|f(\mathbf{x}) \equiv \exp(-c(\mathbf{x}, y, f(\mathbf{x})))$

	loss function $\tilde{c}(\xi)$	density model $p(\xi)$
ε –insensitive	$ \xi _{arepsilon}$	$\frac{1}{2(1+\varepsilon)}\exp(- \xi _{\varepsilon})$
Laplacian	$ \xi $	$\frac{1}{2}\exp(- \xi)$
Gaussian	$\frac{1}{2}\xi^2$	$\frac{1}{\sqrt{2\pi}}\exp(-\frac{\xi^2}{2})$
Huber's	$\begin{cases} \frac{1}{2\sigma}(\xi)^2 & \text{if } \xi \le \sigma \\ \xi - \frac{\sigma}{2} & \text{otherwise} \end{cases}$	$\int_{-\infty}^{\infty} \left\{ \exp(-\frac{\xi^2}{2\sigma}) \text{if } \xi \le \sigma \right\}$
robust loss	$ \int \xi - \frac{\sigma}{2}$ otherwise	$\propto \left\{ \exp(\frac{\sigma}{2} - \xi) \text{ otherwise} \right\}$









A Worked-Through Example, Part I

Function Expansion

We use a linear model (as in the previous lecture) f_1, \ldots, f_n such that

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i f_i(\mathbf{x})$$

Additive Noise

Assume Gaussian noise ξ which corrupts the measurements such that we observe y rather than $f(\mathbf{x})$, i.e. $y = f(\mathbf{x}) + \xi$. We write $\xi \sim \mathcal{N}(0, \sigma)$ in order to state that

$$p(\xi) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}\xi^2}.$$

Density Model

From above we know that $p(y|\mathbf{x}, \alpha, \sigma)$ is given by

$$p(y|\mathbf{x}, \alpha, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - f(\mathbf{x}))^2\right)$$

A Worked-Through Example, Part II

Likelihood

Under the assumption of iid data, the likelihood of observing $Y = \{y_1, \ldots, y_m\}$, given $X = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$ can be found as

$$\mathcal{L} = p(Y|X, \alpha, \sigma) = \prod_{i=1}^{m} p(y_i|\mathbf{x}_i, \alpha, \sigma)$$

Log Likelihood

$$\log \mathcal{L} = \sum_{i=1}^{m} \log p(y_i | \mathbf{x}_i, \alpha, \sigma)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_i - f(\mathbf{x}_i))^2\right)$$

$$= -\frac{m}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y_i - f(\mathbf{x}_i))^2$$

A Worked-Through Example, Part III

Optimality Criterion

We need a maximum with respect to the parameters α , σ . The conditions $\partial_{\alpha}\mathcal{L} = 0$ and $\partial_{\sigma}\mathcal{L} = 0$ are necessary for this purpose.

Optimality in
$$\alpha$$
 $\partial_{\alpha} - \log \mathcal{L} = \partial_{\alpha} \frac{1}{2\sigma^{2}} ||\mathbf{y} - F\alpha||^{2} = \frac{1}{\sigma^{2}} (F^{\top} F\alpha - F^{\top} \mathbf{y}) = 0$

Here we defined (as before) $F_{ij} = f_j(\mathbf{x}_i)$. It leads to the standard least mean squares solution $\alpha = (F^{\top}F)^{-1}F^{\top}\mathbf{y}$.

Optimality in σ

$$\partial_{\sigma} - \log \mathcal{L} = \frac{m}{\sigma} - \frac{1}{\sigma^3} \sum_{i=1}^{m} (y_i - f(\mathbf{x}_i))^2 = 0$$

Likewise this leads to $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(\mathbf{x}_i))^2$ which is *empirical* variance given by the model on the training set.

When Things go wrong with ML

No fine-grained prior knowledge

All functions we optimize over are treated as equally likely.

Not possible to check assumptions

- Our ML model works if the assumptions are correct. However, it breaks if they are not all satisfied. And it is hard to test them.
- Difficult to integrate alternative estimates.
- Confidence bounds for estimates.

High dimensional estimates break

- Overly confident estimates
- Overfitting
- Likelihood diverges: assume $y_i = f(\mathbf{x}_i)$. In this case we would estimate $\sigma = 0$ as the empirical variance. This in turn leads to $\mathcal{L} \to \infty$.

Regularization

Problem

The space of the solutions for f is too large if we admit all possible solutions in, say, the span of f_1, \ldots, f_n . Moreover we want to **rank** the solutions.

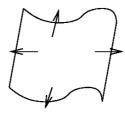
Idea

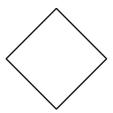
Restrict the possible solutions to the set $\Omega[f] \leq c$ where $\Omega[f]$ is some convex function

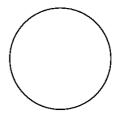
$$\Omega[f] = \sum_{i=1}^{n} |\alpha_i| (\ell_1 \text{ Regularization})$$

$$\Omega[f] = \frac{1}{2} \sum_{i=1}^{n} \alpha_i^2 (\ell_2 \text{ Regularization})$$

$$\Omega[f] = \frac{1}{2} \alpha^{\top} M \alpha$$
 here M is a positive semidefinite matrix







Regularized Risk Functional

Problem

Restricting f to the subset $\Omega[f] \leq c$ will solve the problem but the optimization problems are sometimes rather difficult to solve.

Idea

Trade off the size of $\Omega[f]$ with respect to $R_{\text{emp}}[f]$ and minimize the sum of these two terms.

Definition

For some $\lambda > 0$, also referred to as the regularization constant, the regularized risk functional is given by

$$R_{\text{reg}}[f] = R_{\text{emp}} + \lambda \Omega[f] = \frac{1}{m} \sum_{i=1}^{m} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega[f]$$

This is the central quantity in most learning settings. Note that $R_{\text{reg}}[f]$ is convex, provided $R_{\text{emp}}[f]$ and $\Omega[f]$ are.

Example: Adding to the Diagonal

Quadratic Loss
$$c(\mathbf{x}, y, f(\mathbf{x})) = \frac{1}{2}(y - f(\mathbf{x}))^2$$

Linear Model
$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i f_i(\mathbf{x})$$

$$\ell_2$$
 Regularizer $\Omega[f] = \sum_{i=1}^n \alpha_i^2$

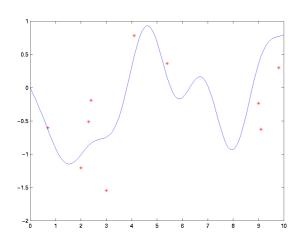
Regularized Risk Functional

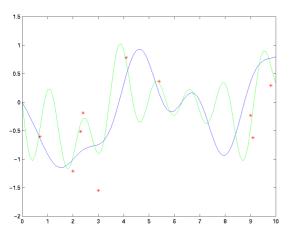
$$R_{\text{reg}}[f] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (y_i - f(\mathbf{x}_i))^2 + \frac{\lambda}{2} \sum_{i=1}^{m} \alpha_i^2 = \frac{1}{2m} ||\mathbf{y} - F\alpha||^2 + \frac{\lambda}{2} ||\alpha||^2$$

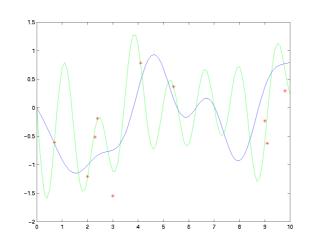
Optimality Conditions

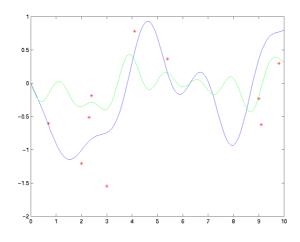
 $\partial_{\alpha}R_{\text{reg}}[f] = \frac{1}{m}(-F^{\top}\mathbf{y} + F^{\top}F\alpha) + \lambda\alpha = 0$ and therefore $\alpha = (F^{\top}F + \lambda m\mathbf{1})^{-1}F^{\top}\mathbf{y}$ This is the same as when we added ε to the main diagonal to invert matrices or improve their condition!

A Practical Example









- Training Set
- Regression for $\lambda = 0.1$
- Regression for $\lambda = 1$
- Regression for $\lambda = 10$