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(Stochastic) Gradient Descent

1 m
Empirical Risk Functional R,,|f| = — g c(xi, yi, f(x;)
m
1=1

Idea 1
Minimize Remp|f] by performing gradient descent. This leads to

A m
f—=Ff- m Zafc(xuyz', f(x)
i=1

Problem

This may be expensive. If the observations are similar, this is very wasteful.

Idea 2
Minimize Remp|f] by performing stochastic gradient descent over the individual

terms under the sum.
Stochastic Gradient [ — f — Adsc(x, v, f(x;))
Linear Model w — w — Ax;c(x;, y;, f(X;))
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Perceptron Algorithm for Squared Loss

argument: Training sample, {xi,...,X,} CX, {y1,...,yn} C {1}, n
returns: Weight vector w and threshold b.
function Perceptron(X,Y,n)

initialize w,b = 0

repeat
for all 7+ from 1 =1,....m
Compute f(x;) = (<Z§:1 a;®(x;), CD(XZ'>> + b)
Update w,b according to w' =w + no;®(x;) and b’ = b+ na;
where «; =y, — f(x;)
endfor

until for all 1 <i<m we have g(x;) =¥
return f:x+— (w,P(x))+b
end
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Perceptron Algorithm for Huber’s Loss

argument: Training sample, {xi,...,Xn} CX, {y1,...,yn} C {1}, n
returns: Weight vector w and threshold b.
function Perceptron(X,Y,n)
initialize w,b =0
repeat
for all + from ¢ =1,...,m

Compute f(x;) = (<Z§:1 a;®(xy), CD(XZ-)> + b)
Update w,b according to w' =w + no;®(x;) and b’ = b+ naq;

where «; = { %@@ — f(xi)) for |y, — f(x))| <o

sgn(y; — f(x;)) otherwise
endfor

until for all 1 <i¢<m we have g(x;) =¥
return f:x+— (w,P(x))+b
end
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Learning Rate
Classification

For classification, the absolute value of f does not matter. So we need not adjust
the learning rate.

Regression

The absolute value of f is crucial, so we have to get n right.
e Large m: we get quick initial convergence to the target but large fluctuations
remain (stochastic gradient can be very noisy).

e Small n: slow initial convergence to the target but we have a much better quality
estimate in the later stages.

Trick
Make 1 a variable of the time. One can show that 7(t) = O(¢ ') is optimal in many

cases. This yields quick initial convergence and low fluctuations later.

Warning

If f is fluctuating, choosing n too small will not be useful.
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Maximum Likelihood and Noise Models

Basic Idea
We assume that the observations y; are derived from f(x;) by adding noise, i.e.

y; = f(x;) + & where & is a random variable with density p(&;).

This also means that once we know the type of noise we are dealing with, we may
compute conditional densities p(y|x) under the model assumptions.

Likelihood p(Y'|f, X) = p((y1 — f(x1)), - s (Um, [(xm)))
We make the assumption of iid data (to keep the equations simple). This leads to

the likelihood

m

L=]]pw— fx))
i=1
Caveat
The estimates we obtain are only as good as our initial assumptions regarding the
type of function expansion and noise. This means that we may not take p(Y'|X) at

book value.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 8, http://axiom.anu.edu.au/~smola/engn4520/lecture8.pdf Page 5



THE AUSTRALIAN
v NATIONAL UNIVERSITY

Log-Likelihood and Loss Function

Idea
Log likelihhood and loss function look suspiciously similar, maybe we can find a link

. For simplicity we assume that the that is generated iid.

Comparison
—log L[f] = > —logp(y: — f(xi))
i=1
1 m
Remplf] = — > clxi, i, f(x1))
m 1=1
Idea

The two terms differ only by a scaling constant which is irrelevant for minimization

purposes. So we match up the terms.

c(x,y, f(x)) = —logp(y — f(x))
py|f(x) = exp(—c(x,y, f(x))
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Density and Loss
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loss function ¢(&)

density model p(§)

e—1nsensitive

[€]s

————"

Laplacian | ¢ 3 exp(—[¢€ )

Gaussian %52 \/—exp(— )

Huber’s (&) )¢ <o . exp(—g—a) if €] <o
robust loss | — 5 otherwise exp(§ — |£]) otherwise
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A Worked-Through Example, Part I

Function Expansion
We use a linear model (as in the previous lecture) fi, ..., f, such that

Fx) = 3 aufix

Additive Noise
Assume Gaussian noise & which corrupts the measurements such that we observe y
rather than f(x), i.e. y = f(x) + & We write £ ~ N(0, o) in order to state that

Density Model

From above we know that p(y|x, a, o) is given by

plulx..0) = ——exp (50 — £
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A Worked-Through Example, Part 11

Likelihood

Under the assumption of iid data, the likelihood of observing Y = {y1,...,ym},
given X = {xy,...,X;,} can be found as

L=p(Y|X,a,0) = || pyilxi o, 0)
=1

[

Log Likelihood

log L = Zlogp yi|xi, o, o)

1=1
= Yt s (=gl = 0
1=1
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A Worked-Through Example, Part 111

Optimality Criterion
We need a maximum with respect to the parameters o, 0. The conditions 0,L = 0

and 0,L = 0 are necessary for this purpose.

1
E(FTFO& ~F'y)=0

Here we defined (as before) Fj; = f;(x;). It leads to the standard least mean squares
solution o = (F''F)"'Fy.

1
Optimality in o 0, — logL = 8aﬁ||y — Fal|* =
%

Optimality in o

m 1
ao- - 10 L —_ — — ) XZ 2 — O
g gl Z(y )
L 1
Likewise this leads to 0% = — g 2 which is empirical variance given
m
1

Z:
by the model on the training set.
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When Things go wrong with ML

No fine-grained prior knowledge

All functions we optimize over are treated as equally likely.
Not possible to check assumptions

e Our ML model works if the assumptions are correct. However, it breaks if they
are not all satisfied. And it is hard to test them.

e Difficult to integrate alternative estimates.

e Confidence bounds for estimates.
High dimensional estimates break

e Overly confident estimates
e Overfitting

e Likelihood diverges: assume y; = f(x;). In this case we would estimate o = 0 as
the empirical variance. This in turn leads to L — oo.
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Problem
The space of the solutions for f is too large if we admit all possible solutions in, say,
the span of f1,..., f,. Moreover we want to rank the solutions.
Idea
Restrict the possible solutions to the set Q[ f] < ¢ where Q[ f] is some convex function
n
Q[f] = Z |a;| (¢1 Regularization)
i=1
1 n
Qlf] = 52 o (¢ Regularization)
i=1
1

Qlf] = §ozTM a here M is a positive semidefinite matrix
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Regularized Risk Functional

Problem
Restricting f to the subset €2[f] < ¢ will solve the problem but the optimization
problems are sometimes rather difficult to solve.

Idea
Trade off the size of | f] with respect to Remp|f] and minimize the sum of these two

terms.

Definition
For some A > 0, also referred to as the regularization constant, the regularized risk
functional is given by

1 m
Rreg[f] — Remp + )‘Q — E Z c(Xi, ¥i, | ) + )‘Q[f]
1=1

This is the central quantity in most learning settings. Note that Rye.|f] is convex,
provided Remp|f] and [ f] are.
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Example: Adding to the Diagonal

Quadratic Loss c(x, y, f(x)) = 1<y )

Linear Model f(x ZozZ fi(x

/5 Regularizer Q| f] = Z o

Regularized Risk Functional

1 -1 ; A= 5 1 D
re = — S\WYi — i 5 =y — I 5
Realfl = 5 25 = 10x)P 45 > o = glly = FolP + ol

Optimality Conditions
1
OuRrcsf] = —(=F'y+F'Fa)+ M a = 0 and therefore a = (F' F +  ml) ' F'y
m
This is the same as when we added € to the main diagonal to invert matrices or

improve their condition!
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A Practical Example
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e Training Set
e Regression for A
e Regression for A

e Regression for A

0.1

10
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