
How the brain doesn’t work

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 1



Biology and Learning

Basic Idea

• Good behavior should be rewarded, bad behavior punished (or not rewarded).

This improves the fitness of the system.

Example: hitting a sabertooth tiger over the head should be rewarded ...

• Correlated events should be combined.

Example: Pavlov’s salivating dog.

Training Mechanisms

• Behavioral modification of individuals (learning) — successful behavior is re-

warded (e.g. food).

• Hard-coded behavior in the genes (instinct) — the wrongly coded animal dies.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 2



Neurons

Soma Cell body. Here the signals

are combined (“CPU”).

Dendrite Combines the inputs

from several other nerve cells

(“input bus”).

Synapse Interface between two

neurons (“connector”).

Axon This may be up to 1m long

and will transport the activa-

tion signal to nerve cells at

different locations (“output ca-

ble”).

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 3



Perceptrons

Linear Separation

The output of the neuron is a linear combination of the inputs (from the other

neurons via their axons) rescaled by the synaptic weights.

Often the output does not directly correspond to the activation level but is a mono-

tonic function thereof.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 4



Separating Half Spaces

Linear Functions

An abstract model is to assume that f (x) = 〈w,x〉 + b where x,w ∈ Rm and

b ∈ R.

Biological Interpretation

The weights wi correspond to the synaptic weights (activating or inhibiting), the

multiplication corresponds to the processing of inputs via the synapses, and the

summation is the combination of signals in the cell body (soma).

Applications

Spam filtering (e-mail), echo cancellation (old analog overseas cables)

Learning

The weights are “plastic” can be adapted via the training data.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 5



Perceptron Learning Rule
argument: Training sample, {x1, . . . ,xm} ⊂ X, {y1, . . . , ym} ⊂ {±1}

Learning rate, η

returns: Weight vector w and threshold b.

function Perceptron(X, Y, η)

initialize w, b = 0

repeat

for all i from i = 1, . . . ,m

Compute g(xi) = sgn((w · xi) + b)

Update w, b according to

w′ = w + (η/2) (yi − g(xi)) xi
b′ = b + (η/2) (yi − g(xi)) .

endfor

until for all 1 ≤ i ≤ m we have g(xi) = yi
return f : x 7→ (w · x) + b

end

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 6



Theoretical Analysis

Incremental Algorithm

Already while the perceptron is learning, we can use it. Updates are only small

steps.

Convergence Theorem

Suppose that there exists a ρ > 0, a weight vector w∗ satisfying ‖w∗‖ = 1, and a

threshold b∗ such that

yi (〈w∗,xi〉 + b∗) ≥ ρ for all 1 ≤ i ≤ m.

Then for all η > 0, the hypothesis maintained by the perceptron algorithm converges

after no more than (b∗2 + 1)(R2 + 1)/ρ2 updates, where R = maxi ‖xi‖. Clearly, the

limiting hypothesis is consistent with the training data (X, Y ).

This theorem is due to Rosenblatt and Novikoff.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 7



Proof, Part I

Starting Point

We start from w1 = 0 and b1 = 0.

Bound on the Increase of 〈(wi, bi), (w
∗, b∗)〉

Denote by wi the value of w at step i, and analogously bi. Then we have

〈(wj+1, bj+1) · (w∗, b∗)〉 = 〈[(wj, bj) + (η/2)(yi − gj(xi))(xi, 1)] , (w∗, b∗)〉
= 〈(wj, bj), (w

∗, b∗)〉 + ηyi〈(xi, 1) · (w∗, b∗)〉
≥ 〈(wj, bj), (w

∗, b∗)〉 + ηρ

≥ jηρ.

Cauchy-Schwartz for the Dot Product

〈(wj+1, bj+1) · (w∗, b∗)〉 ≤ ‖(wj+1, bj+1)‖ ‖(w∗, b∗)‖
=
√

1 + (b∗)2‖(wj+1, bj+1)‖

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 8



Proof, Part II

Combination of First Two Steps

jηρ ≤
√

1 + (b∗)2‖(wj+1, bj+1)‖

Upper Bound on ‖wbj, bj‖
If we make a mistake we have

‖(wj+1, bj+1)‖2 = ‖(wj, bj) + ηyi(xi, 1)‖2

= ‖(wj, bj)‖2 + 2ηyi〈(xi, 1), (wj, bj)〉 + η2‖(xi, 1)‖2

≤ ‖(wj, bj)‖2 + η2‖(xi, 1)‖2

≤ jη2(R2 + 1).

Combination with Third Step

jnρ ≤
√

1 + (b∗)2‖(wj+1, bj+1)‖ ≤
√

1 + (b∗)2
√
jη2(R2 + 1)

Solving for j proves the theorem.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 9



What does it mean?

Learning Algorithm

We perform an update only if we make a mistake.

Convergence Bound

This bounds the maximum number of mistakes in total. If we do not stop learning

we will make at most (b∗2 + 1)(R1 + 1)/ρ2 mistakes in the case where a “correct”

solution w∗, b∗ exists.

This also bounds the expected error (if we know ρ,R, and |b∗|).

Dimension Independent

Note that this bound does not depend at all on the dimensionality of X. Also the

learning algorithm itself only depends on X via the observations xi.

Sample Expansion

We obtain x as a linear combination of xi.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 10



Realizable and Non-realizable Concepts

Realizable Concept

Here some w∗, b∗ exists such that y is generated by y = sgn (〈w∗,x〉 + b). In

general realizable means that the exact functional dependency is included in the

class of admissible hypotheses.

Unrealizable Concept

In this case, the exact concept does not exist or it is not included in the function

class.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 11



Perceptron as Stochastic Gradient Descent

Linear Function Expansion f (x) = 〈w,x〉 + b

Objective Function

R[f ] :=

m∑
i=1

max(0,−yif (xi)) =

m∑
i=1

max (0,−yi (〈w,xi〉 + b))

Stochastic Gradient

We use each term in the sum as a stochastic approximation of the overall objective

function. This leads to the stochastic gradient

∂w max (0,−yi (〈w,xi〉 + b)) =

{
−yixi for f (xi) < 0

0 otherwise

∂b max (0,−yi (〈w,xi〉 + b)) =

{
−yi for f (xi) < 0

0 otherwise

Update Equation

w→ w − λ∂w[. . .], b→ b− λ∂b[. . .]
Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 12



Nonlinearity via Preprocessing

Problem

Linear functions are often too simple to

provide good estimators.

Idea

Map to a higher dimensional feature

space via Φ : x → Φ(x) and solve the

problem there.

Replace every 〈x,x′〉 by 〈Φ(x),Φ(x′)〉 in

the perceptron algorithm.

Consequence

We have nonlinear classifiers.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 13



Perceptron on Features

argument: Training sample, {x1, . . . ,xm} ⊂ X, {y1, . . . , ym} ⊂ {±1}, η

returns: Weight vector w and threshold b.

function Perceptron(X, Y, η)

initialize w, b = 0

repeat

for all i from i = 1, . . . ,m

Compute g(xi) = sgn
(〈∑i

l=1 αlΦ(xl),Φ(xi)
〉

+ b
)

Update w, b according to

w′ = w + (η/2)αiΦ(xi) where αi (yi − g(xi))

b′ = b + (η/2) (yi − g(xi)) .

endfor

until for all 1 ≤ i ≤ m we have g(xi) = yi
return f : x 7→ 〈w,Φ(x)〉 + b

end

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 14



An Observation: Polynomial Features

Quadratic Features in R2

Φ(x) :=
(
x2

1,
√

2x1x2, x
2
2

)
Dot Product

〈Φ(x),Φ(x′)〉 =
〈(
x2

1,
√

2x1x2, x
2
2

)
,
(
x′1

2
,
√

2x′1x
′
2, x
′
2
2
)〉

= 〈x, x′〉2.

This trick does not only work for 2nd order polynomials but for any 〈x, x′〉d.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 15



Perceptron with Kernels

Idea

The dot product in feature space can sometimes be computed more cheaply than

actually computing the feature map Φ : x→ Φ(x). We define

k(x,x′) := 〈Φ(x),Φ(x′)〉

to be the kernel function between x and x′.

Consequence

Replace 〈Φ(x),Φ(x′)〉 by k(x,x′) to obtain a nonlinear algorithm from a linear

algorithm.

Problem

Will any k(x,x′) do? No, and the details will be revealed in two weeks . . .

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 6, http://axiom.anu.edu.au/∼smola/engn4520/lecture6.pdf Page 16


