
Operators

Linear Operator

Generalization of matrix. We map from one Banach space into another. Norm and

eigenvalues/eigenvectors are defined as with matrices. We use A : F → G.

A Matrix — Operator Dictionary

Transposed Matrix — Adjoint Operator

〈f, Ag〉 = 〈A∗f, g〉 for all f ∈ F, g ∈ G

Symmetric Matrix — Self Adjoint Operator

〈f, Ag〉 = 〈f, A∗g〉 for all f ∈ F, g ∈ G

Orthogonal Matrix — Isometry

〈f, g〉 = 〈Af,Ag〉

Note that the requirement ‖f‖ = ‖Af‖ is sufficient (polarization trick).
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Linear Operators: Examples

Input Transformation

Consider class of functions f : Rn → R. A linear operator on such functions could

be A : f (·)→ f (a(·)), i.e. the argument of f is transformed (e.g. we transform the

images before feeding them into a classifier).

Differentiation

The differential operator D : f → d
dxf is linear.

Scaling Transform f → αf .

Fourier Transformation

We map f into its Fourier transform. This leads to

f → f̃ (ω) =
1√
2π

∫
R

f (x)e−iωxdx

This map is an isometry, since

‖f‖2 =

∫
R

|f (x)|2dx =

∫
R

|f̃ (ω)|2dω = ‖f̃‖2
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Linear Forms

Linear Form

A specific kind of linear operator, namely one that maps into R.

Dual Space

The space of all linear forms on a Banach space X is called the dual space and often

denoted by X∗.

We can write the linear forms l(x) by 〈x∗,x〉 where x∗ ∈ X∗ is chosen to correspond

to l(x).

Rank

All non-null linear forms have rank 1.

Example: Linear Functions on Rm

l(x) =

m∑
i=1

xi. This corresponds to x∗ = (1, . . . , 1).
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Useful Properties of Linear Form

Norm

We can induce a dual norm on X∗ by

x∗ := max
x∈X

|〈x∗,x〉|
‖x‖

For `p spaces the dual space is an `q space with 1
p + 1

q = 1. We show this by Hölder’s

inequality

|〈x∗,x〉| =

∣∣∣∣∣∑
i

x∗ixi

∣∣∣∣∣ ≤ ‖x∗‖p‖x‖q
Since the inequality is tight for all 1

p + 1
q = 1 we are done. For `1 this is `∞.

Note that Hilbert spaces are dual to themselves.

Subspaces

We can define a linear form on a subspace spanned by xi by requiring

〈w,x〉 with w =

m∑
i=1

αixi
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Derivatives in Rn

Differentiability

A function f : X → R is differentiable if there exists a linear map f ′(x) ∈ X∗

such that the following limit exists

lim
y→0

f (x + y)− f (x)− 〈f ′(x),y〉
‖y‖

= 0.

The functions in this lecture are usually differentiable . . .

Partial Derivative

For a function f : Rm → R compute the partial derivative by treating f (x) as a

function of each xi separately while keeping the rest fixed.

Gradient

This is the vector of all partial derivatives. See also the linear form above.

Criterion for Differentiability

• Existence of all partial derivatives in f (x)
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• Continuity of the partial derivatives in f (x).
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When things go wrong

f (x) =
x2

1x2

x2
1 + x2

2

All partial derivatives ex-

ist in (0, 0) but f (x)

is not differentiable in

(0, 0).
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Taylor Expansion

Basic Idea

Extend the approximation by linear functionals as in the definition of the derivative.

Taylor Expansion in R

For an n + 1-times differentiable function we have

f (x + ε) = f (x) +

n∑
i=1

1

i!
εif (n)(x) + o(εn+1)

Taylor Expansion in Rn

Usually we only need first and second order expansions. The second order informa-

tion of f at x is called the Hessian. We have

f (x + ε) = f (x) + ε>f ′(x) +
1

2
ε>f ′′(x)ε + o(‖ε‖3)

Admissibility of Expansion

Expansion is OK if the n+ 1st derivative exists. Then the error term is bounded by

the size of the latter and ‖ε‖n+1.
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Newton Method

Basic Idea

We want to minimize f (x). Use quadratic approximation and solve at each step for

the minimum of the latter explicitly. We get f ′(x) + f ′′(x)ε = 0 which yields the

following algorithm:

Require: x0, Precision ε

Set x = x0

repeat

x = x− f ′(x)
f ′′(x)

until |f ′(x)| ≤ ε

Output: x

Convergence of Newton Method Let g : R→ R be a twice continuously differ-

entiable function and denote by x∗ ∈ R a point with f ′′(x∗) 6= 0 and f ′(x∗) = 0.

Then, provided x0 is sufficiently close to x∗, the sequence generated by the Newton

method will converge to x∗ at least quadratically.
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Derivatives in Banach Spaces

Basic Idea

Extend the definitions from derivatives in Rn. Linear approximation

lim
y→0

f (x + y)− f (x)− 〈f ′(x),y〉
‖y‖

is useful if we can compute it. Otherwise, also the Gateaux derivative is convenient.

We define f ′(x) by

〈f ′(x),y〉 =
d

dα
f (x + αy) for α→ 0

Example (in a Hilbert Space)

For f (x) = ‖x‖4 we have

f (x + αy) =
(
‖x‖2 + 2α〈x,y〉 + α2‖y‖

)2

Since d
dαf (x + αy) = 4‖x‖2〈x,y〉 for α→ 0 we have f ′(x) = 4‖x‖2x.
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Convexity

Convex Set

A set X is called convex if for any x,x′ ∈ X and any λ ∈ [0, 1] we have

λx + (1− λ)x′ ∈ X.

Convex Function

A function f defined on a set X (note that X need not be convex itself) is called

convex if for any x,x′ ∈ X and any λ ∈ [0, 1] such that λx + (1 − λ)x′ ∈ X we

have

f (λx + (1− λ)x′) ≤ λf (x) + (1− λ)f (x′).

A function f is called strictly convex if the inequality is strict for λ ∈ (0, 1).

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 2, http://axiom.anu.edu.au/∼smola/engn4520/lecture2.pdf Page 11



Convex Sets as Below Sets

Lemma

Denote by f : X→ R a convex function on X. Then the set

X := {x|x ∈ X and f (x) ≤ c} for some c ∈ R

is convex.

Proof

We have to show that for all x,x′ ∈ X we have λx + (1 − λ)x′ ∈ X. For any

x,x′ ∈ X we have f (x), f(x′) ≤ c. Moreover, since f is convex, we also have

f (λx + (1− λ)x′) ≤ λf (x) + (1− λ)f (x′) ≤ c for all λ ∈ [0, 1].

Hence, for all λ ∈ [0, 1] we have (λx + (1− λ)x′) ∈ X which proves the claim.
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Example

• Level sets of the `1.5 norm.
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Uniqueness of Minimum

Theorem

If the convex function f : X → R has a minimum on a convex set X ⊂ X, then

its arguments x ∈ X for which the minimum value is attained, form a convex set.

Moreover, if f is strictly convex, then this set will contain only one element.

Proof

Denote by c the minimum of f on X . Then clearly the set Xm := {x|x ∈
X and f (x) ≤ c} is convex. Moreover Xm ∩X is also convex and f (x) = c for all

x ∈ Xm ∩X (otherwise c would not be the minimum).

If f is strictly convex, for any x,x′ ∈ X , and in particular for any x,x′ ∈ X ∩Xm

we have (for x 6= x′ and all λ ∈ (0, 1)

f (λx + (1− λ)x′) < λf (x) + (1− λ)f (x′) = λc + (1− λ)c = c.

This contradicts the assumption that Xm ∩X contains more then one element.
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Constrained Convex Minimization

Corollary

Denote by f, c1, . . . , cn convex functions on X. Then the problem

minimize f (x)

subject to ci(x) ≤ 0 for all i ∈ [n]

has as solution a convex set if a solution exists and this solution is unique if f is

strictly convex.
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Interval Cutting Method

Basic Idea

If f is a convex function, the slope can only increase. So, all we have to do is look

at where the slope changes. This algorithms is the same as the one for finding the

root of a monotonic function.

Require: a, b, Precision ε

Set A = a,B = b

repeat

if f ′
(
A+B

2

)
> 0 then

B = A+B
2

else

A = A+B
2

end if

until (B − A) min(|f ′(A)|, |f ′(B)|) ≤ ε

Output: x = A+B
2
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Constrained Optimization

Optimization Problem

minimize f (x)

subject to ci(x) ≤ 0 for all i ∈ [n].

Here ci(x) are convex functions.

Lagrange Function

The basic idea is to convert the constrained optimization problem into the problem

of finding the saddlepoint of the Lagrange function

L(x, α) := f (x) +

n∑
i=1

αici(x) where αi ≥ 0.

Theorem

Minimize L(x, α) with respect to x while maximizing L(x, α) with respect to α. For

an optimal solution we have

L(x̄, α) ≤ L(x̄, ᾱ) ≤ L(x, ᾱ)

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 2, http://axiom.anu.edu.au/∼smola/engn4520/lecture2.pdf Page 17



Saddlepoint Property of Lagrange Function

Proof of L(x̄, α) ≤ L(x̄, ᾱ) ≤ L(x, ᾱ)

• From the first inequality it follows that

n∑
i=1

(αi − ᾱi)ci(x̄) ≤ 0.

• Since αi ≥ 0 was arbitrary, we can see (by setting all but one of the terms αi to

ᾱi and the remaining one to αi = ᾱi + 1) that ci(x) ≤ 0 for all i ∈ [n]. This

shows that x̄ satisfies the constraints, i.e. it is feasible.

• By setting one of the αi to 0 we see that ᾱici(x̄) ≥ 0. The only way to satisfy

this is by requiring

ᾱici(x̄) = 0 for all i ∈ [n]. This yields L(x̄, ᾱ)

This is often also referred to as the Karush-Kuhn-Tucker (KKT) condition.

• Combining the latter and ci(x̄) ≤ 0 with the second inequality in the optimality

condition yields f (x̄) ≤ f (x)+
∑n

i=1 αici(x) ≤ f (x) for all feasible x. This proves

that x̄ is optimal.
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Differentiable Functions

Lagrange Function

L(x, α) = f (x) +

n∑
i=1

αici(x)

From the saddle point condition and the fact that ci(x)αi = 0 for the optimal

solution we obtain the following conditions.

Optimality Conditions

∂xL(x̄, ᾱ) = ∂xf (x̄) +

n∑
i=1

ᾱi∂xci(x̄) = 0 (Minimum in x̄ for L(x, ᾱ))

∂αiL(x̄, ᾱ) = ci(x̄) ≤ 0 (Minimum in ᾱ for L(x̄, α))
n∑
i=1

ᾱici(x̄) = 0 (Vanishing KKT-Gap)
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The Primal-Dual HOWTO

Primal Objective

Constrained optimization problem with f (x), subject to constraints ci(x) ≤ 0.

Dual Objective

From the saddlepoint conditions of the Lagrange functions we can eliminate x as

x(α) and write L(x(α), α). This is the dual objective function.

We get dual constraints from the optimality conditions on x via ∂xL(x(α), α) = 0.

Trick: Variables and Constraints

Free Variable =⇒ Equality Constraint

Equality Constraint =⇒ Free Variable

Inequality Constraint =⇒ Inequality Constraint
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Linear Programs

Primal Objective
minimize c>x

subject to Ax + b ≤ 0

Lagrange Function

L(x, α) = c>x + α>(Ax + b) where αi ≥ 0

Kuhn-Tucker Conditions

αi(Ax + b)i = 0

Dual Objective (also Wolfe’s Dual)

Saddlepoint condition in the primal variables x yields

∂xL(x, α) = c + A>α = 0

and therefore

maximize L(x(α), α) = (c + A>α)>x + α>b = α>b

subject to c + A>α = 0 and α ≥ 0
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Quadratic Programs

Primal Objective (K is positive definite)

minimize 1
2x
>Kx + c>x

subject to Ax + b ≤ 0

Lagrange Function

L(x, α) =
1

2
x>Kx + c>x + α>(Ax + b)

Kuhn-Tucker Conditions

αi(Ax + b)i = 0

Dual Objective (also Wolfe’s Dual)

Saddlepoint condition in the primal variables x yields

∂xL(x, α) = Kx + A>α + c = 0

and therefore

maximize L(x(α), α) = −1
2α
>A>K−1Aα +

[
b− c>K−1A>

]
α− 1

2c
>K−1c

subject to α ≥ 0
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