
Gradient Descent in Feature Space

Linear Functions in Feature Space

f (x) = 〈w,Φ(x)〉

Empirical Risk Functional

Remp[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi)

Regularized Risk Functional

Remp[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖w‖2

Idea

Minimize Rreg[f ] by performing gradient descent. This leads to

w → w − Λ∂wRreg[f ]
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Gradient Descent in Feature Space

Gradient Descent Update

w → w − Λ∂wRreg[f ]

= w − Λ

m

m∑
i=1

c′(xi, yi, f(xi)Φ(xi)− Λλw

= (1− Λλ)w − Λ

m

m∑
i=1

c′(xi, yi, f(xi)Φ(xi)

Coefficient Notation

If we represent w as a linear combination of Φ(xi), i.e.

w =

m∑
i=1

αiΦ(xi)

we obtain the following update rules for αi

αi → (1− Λλ)αi − c′(xi, yi, f(xi))
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Stochastic Gradient Descent

Problem

Gradient descent may be expensive, in particular if the observations are similar.

Idea

Minimize Rreg[f ] by performing stochastic gradient descent over the individual terms

under the sum of

Remp[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖w‖2

Stochastic Gradient

w→ w − Λc′(xi, yi, f(xi))Φ(x)− Λλw

Coefficient Notation

We obtain the following update rule for i

αi → (1− Λλ)αi − c′(xi, yi, f(xi))

for all other j 6= i we have αj → (1− λΛ)αj.
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Stochastic Gradient Descent Algorithm

argument: Training sample, {x1, . . . ,xm} ⊂ X, {y1, . . . , ym} ⊂ {±1}, λ,Λ

returns: Weight vector w.

function StochasticGradientDescent(X, Y, λ,Λ)

initialize αi = 0 for all i

repeat

for all i from i = 1, . . . ,m

Compute f (xi) =
〈∑i

l=1 αlΦ(xl),Φ(xi)
〉

=
∑i

l=1 αlk(xl,xi)

Update αi according to αi = (1− λΛ)αi − Λc′(xi, yi, f(xi))

and αj = (1− λΛ)αj (for j 6= i).

endfor

until for all 1 ≤ i ≤ m we have | 1mc
′(xi, yi, f(xi)) + λαi| ≤ ε end

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 12, http://axiom.anu.edu.au/∼smola/engn4520/lecture12.pdf Page 4



So why do kernels work?

Problem

We map into a very high dimensional space. This is in conflict with the curse

of dimensionality (recall the “10 observations per dimension” rule of thumb), in

particular we have several orders of magnitude more dimensions than observations.

Empirical Finding

Kernels work.

Idea

Maybe, the idea of flatness of f , i.e. the idea of having small ‖w‖ is helping us.

We are not using all possible combinations of coefficients in w but rather only those

for which the overall sum of coefficients is small.

The regularization constant λ specifies the trade-off between goodness of fit on the

training set (the empirical error Remp[f ]) and a small value of ‖w‖2 which is respon-

sible for an effectively smaller class of functions.
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Regularization Functionals

Goal

Quite often we would want to find a smooth function rather than one with small

w in a high dimensional space which we have no real control over.

Question

What function space does k(x,x′) = exp(−‖x− x′‖2) really correspond to?

Idea

Use a regulariztion functional Ω[f ] instead, where we can specify the smoothness

properties of f directly, such as

Ω[f ] :=
1

2

(
‖f‖2 + ‖f ′‖2

)
or Ω[f ] :=

1

2

(
‖f‖2 + ‖f ′‖2 + ‖f ′′‖2

)
.

This means that we are explicitly favouring functions with small values, flat functions,

etc.
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Regularization Functionals in Fourier Space

Idea

Maybe the regularization functional becomes easier to handle in Fourier domain.

Recall

The Fourier transform f̃ (ω) of the derivative of f (x) is given by iωf̃ (ω). Proof:

d

dx
f (x) =

d

dx
(2π)−

n
2

∫
X

exp(i〈ω,x〉)f̃ (ω)dω

= (2π)−
n
2

∫
X

d

dx
exp(i〈ω,x〉)f̃ (ω)dω

= (2π)−
n
2

∫
X

iω exp(i〈ω,x〉)f̃ (ω)dω

and therefore iωf̃ = f̃ ′.

Application

‖f‖2 + ‖f ′‖2 =

∫
X

|f̃ (ω)|2dω +

∫
X

|f̃ (ω)|2‖ω‖2dω =

∫
X

(
1

1 + ‖ω‖2

)−1

|f̃ (ω)|2dω
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Regularization Functionals in Fourier Space

Application 2

‖f‖2 + ‖f ′‖2 + c‖f ′′‖2

=

∫
X

|f̃ (ω)|2dω +

∫
X

|f̃ (ω)|2‖ω‖2dω + c

∫
X

|f̃ (ω)|2‖ω‖4dω

=

∫
X

(
1

1 + ‖ω‖2 + c‖ω‖4

)−1

|f̃ (ω)|2dω

Idea

We can extend this formalism such that it includes more general positive, symmetric

functions Q(ω) with Q(ω)→ 0 for ω →∞. It leads to

Ω[f ] :=

∫
X

|f̃ (ω)|2

Q(ω)
dω

In this case Q(ω) describes the desired frequency properties of f .
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Regularization Functionals and Dot Products

Idea

The functional Ω[f ] in Fourier space also defines a dot product between functions.

It is given by

〈f, g〉H :=

∫
X

f̃ (ω)g(ω)

Q(ω)
dω

We can check that 〈f, f〉H leads to the original form of Ω[f ].

Kernels and Feature Spaces

Maybe we can find a kernel function k such that for the map

x→ k(x, ·)

we have at the same time

〈k(x, ·), k(x′, ·)〉H = k(x,x′).

In this case the map x→ k(x, ·) would be the feature map and the Hilbert space

given by 〈, ·, ·〉H the corresponding feature space.
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Regularization and Fourier Transforms

Wild Guess

Given a regularization functional via

Ω[f ] :=

∫
X

|f̃ (ω)|2

Q(ω)
dω

we posit (of course it is true and we will prove it on the next slide) that the kernel

k(x− x′), for which Q(ω) = k̃(ω), satisfies the condition

〈k(x, ·), k(x′, ·)〉H = k(x,x′).

Interpretation

This means that the Fourier transform of the kernel tells us how smooth the function

class is that we are approximating.

It also allows us to construct a kernel corresponding to the regularization terms, such

as ‖f‖2 +‖f ′‖2, described before, simply by computing the Fourier representation of

the regularization term first and subsequently performing a Fourier transform back.
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Proof

Computing the Dot Product

Translations in the x domain correspond to multiplications in the Fourier domain,

i.e.

g(x′) := k(x− x′) =⇒ g̃(x) = k̃(ω) exp(−i〈ω,x′〉)
For k̃(ω) = Q(ω) we have

〈k(x, ·), k(x′, ·)〉H =

∫
X

k̃(ω) exp(−i〈ω,x〉)k̃(ω) exp(−i〈ω,x′〉)
Q(ω)

dω

=

∫
X

Q2(ω)

Q(ω)
exp(i〈ω,x− x′〉)dΩ

=

∫
X

Q(ω) exp(i〈ω,x− x′〉)dΩ = k(x− x′)

The space given by 〈·, ·〉H is often also referred to as the Reproducing Kernel

Hilbert Space.
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Application to Dot Product Kernels

Gaussian RBF Kernel

For a kernel of type

k(x, x′) =
1√

2πσ2
exp(− 1

2σ2
|x− x′|)

the Fourier transform is given by

k̃(ω) =

√
σ2

2π
exp(−σ

2

2
|x− x′|)

The narrower we choose the kernels in input space, the wider their Fourier transform

becomes. Consequently we accept more high frequency components.

Laplacian Kernel

For k(x, x′) = exp(−|x − x′|) we have k̃(ω) =
√

2
π

1
1+ω2 . This means that the

Laplacian kernel is less smooth than the Gaussian one.
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Application to Regularization Terms

Operator Representation

If Ω[f ] is represented as a sum of norms of derivatives, i.e.

Ω[f ] =
∑
j

cj

∥∥∥∥∥
(
d

dx

)j
f

∥∥∥∥∥
2

we can find a corresponding Fourier representation where
1

Q(ω)
=
∑
i

cj‖ω‖2j.

Therefore we can obtain the kernel corresponding to Q[ω] by computing the Fourier

transform of Q.

Laplacian Kernel

We already showed that the Fourier transform of e−|x| is 1
1+ω2 . From this we imme-

diately read off the regularization term as c0 = 1 and c1 = 1, i.e.

Ω[f ] = ‖f‖2 + ‖f ′‖2.
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