
A Counterexample

A Candidate for a Kernel

k(x,x′) =

{
1 if ‖x− x′‖ ≤ 1

0 otherwise

This is symmetric and gives us some information about the proximity of points, yet

it is not a proper kernel . . .

Explicit Counterexample

We use three points, x1 = 1, x2 = 2, x3 = 3 and compute the resulting “kernelma-

trix” K. This yields

K =

 1 1 0
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as eigensystem. Clearly this is not what we want since K must have nonnegative

eigenvalues to be a kernel matrix. Hence k is not a kernel.
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Mercer’s Theorem

The Theorem

For any symmetric function k : X × X → R which is square integrable in X × X

and which satisfies∫
X×X

k(x,x′)f (x)f (x′)dxdx′ ≥ 0 for all f ∈ L2(X)

there exist functions φi : X→ R and numbers λi ≥ 0 such that

k(x,x′) =
∑
i

λiφi(x)φi(x
′) for all x,x′ ∈ X.

Interpretation

Effectively the double integral is the continuous version of a vector-matrix-vector

multiplication. Recall that for positive semidefinite matrices we had∑
i

∑
j

k(xi,xj)αiαj ≥ 0
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Interpretation, Part II

Integral Operator

A useful trick is to consider the integral operator Tk associated with k via

Tk : L2(X)→ L2(X) where (Tkf )(x) =

∫
X

k(x,x′)f (x′)dx′

Eigensystem of Operators

In this case Mercer’s condition reads as∫
X×X

k(x,x′)f (x)f (x′)dxdx′ =

∫
X

f (x)(Tkf )(x)dx = 〈f, Tkf〉 ≥ 0

In other words, Tk has to be an operator with nonnegative eigenvalues. There the

λi, φi(x) are the eigenvalues and eigenfunctions of Tk.

This means that we replaced the the condition that all the eigenvalues of a ma-

trix be nonnegative by the requirement that all the eigenvalues of an operator be

nonnegative.
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Gaussian RBF Kernels

Radial Basis Function Kernels

The polynomial kernels so far were of the type κ(〈x,x′〉). Quite often we would,

however, prefer a kernel which depends on the distance between points. This can be

achieved by

k(x,x′) = κ(x− x′) such as k(x,x′) = exp

(
− 1

2σ2
‖x− x′‖2

)
.

Properties

Typically we set κ(0) = 1. This means that for all x we have

‖Φ(x)‖2 = 〈Φ(x),Φ(x)〉 = k(x,x) = κ(‖x− x‖) = 1.

In other words, all observations are mapped onto the unit sphere in the feature

space given by Φ.

As we shall see, the Fourier transform of κ tells us about how smooth the features

that we are extracting.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 11, http://axiom.anu.edu.au/∼smola/engn4520/lecture11.pdf Page 4



When are RBF Kernels OK?

Problem

Not all RBF kernels are admissible. Recall the indicator function kernel with the

negative eigenvalues in K.

Goal

We need a simple criterion to figure out whether some k satisfies Mercer’s condition

and therefore corresponds to a dot product in some feature space.

Idea

Maybe, applying the Fourier transformation to the integral condition will help. In

the RBF case k(x,x′) = κ(x− x′) and therefore Mercer’s condition reads as∫
X×X

f (x)κ(x− x′)f (x′)dxdx′

This looks like a dot product and a convolution with κ . . .
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Fourier Transform and Fourier Plancherel

Fourier Transform

For a square integrable function f : Rn → R the Fourier Transform f̃ is given by

f̃ (ω) := (2π)−
n
2

∫
exp(−i〈ω,x〉)f (x)dx.

Fourier Plancherel

The power in the time domain and in frequency domain are the same. More formally

this means that

‖f‖2 =

∫
|f (x)|2dx =

∫
|f̃ (ω)|2dω = ‖f̃‖2

However, due to the polarization inequality this also holds for dot products between

functions, i.e.

〈f, g〉 = 〈f̃ , g̃〉.
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Convolutions

Definition

The convolution of two functions f, g : X→ R is defined as

(f ◦ g)(x) :=

∫
X

f (x′)g(x− x′)dx′

Symmetry

f ◦ g :=

∫
X

f (x′)g(x− x′)dx =

∫
X

f (x− τ )g(τ )dτ = g ◦ f

Here we used the variable substitution τ = x− x′.

Convolutions and Fourier Transform

The Fourier transform of a convolution is the product of the Fourier transforms of

the arguments and vice versa, i.e.

˜f ◦ g = (2π)
n
2 f̃ · g̃ and (2π)

n
2 f̃ ◦ g̃ = f · g

Recall linear filters where the final signal was a convolution in time domain and a

multiplication in frequency domain.
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Proof of Convolution Property

Time to Frequency

We ignore all integrability considerations (or divergence thereof) and simply write

out the equations (don’t do that at home).

˜f ◦ g

= (2π)−
n
2

∫
R
n

exp(−i〈ω,x〉)
∫
R
n
f (x′)g(x− x′)dx′dx

= (2π)−
n
2

∫
R
n

exp(−i〈ω,x− x′〉) exp(−i〈ω,x′〉)f (x′)g(x− x′)dxdx′

= (2π)−
n
2

∫
R
n

∫
R
n

exp(−i〈ω, τ〉)g(τ ) exp(−i〈ω,x〉)f (x′)dτdx′

= (2π)
n
2

(
(2π)−

n
2

∫
R
n

exp(−i〈ω, τ〉)g(τ )dτ

)(
(2π)−

n
2

∫
R
n

exp(−i〈ω,x〉)f (x′)dx′
)

= (2π)
n
2 f̃ · g̃

Time to Frequency

The same reasoning as above, again we have to swap the order of integration.
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Proof for RBF Kernels

Rewriting Mercer’s Condition∫
X

∫
X

f (x′)k(x− x′)f (x)dxdx′

=

∫
X

(f ◦ k)(x)f (x)dx

= 〈(f ◦ k), f〉
= (2π)

n
2〈f̃ · k̃, f̃〉

= (2π)
n
2

∫
X

|f̃ (ω)|2k̃(ω)dω

Positivity Condition

The integral is exactly then always nonnegative if

k̃(ω) ≥ 0 for all ω ∈ X

This means that Mercer’s condition is easy to check — simply compute k̃(ω) and

check its sign.
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Examples

Gaussian Kernels

Now we finally can check whether k(x,x′) = exp

(
− 1

2σ2
‖x− x′‖

)
is positive

semidefinite. We know that the Fourier transform of a Gaussian is a Gaussian,

hence never negative. That’s sufficient.

Laplacian Kernel

For the kernel k(x,x′) = exp(−‖x − x′‖) things are a bit trickier, since there the

Fourier transform depends on the dimensionality of X. For X = R we have

k̃(ω) =
1√
2π

∫ ∞
−∞

e−|x|e−iωxdx

=
1√
2π

∫ ∞
0

e−(1+iω)x + e−(1−iω)xdx

=
1√
2π

(
1

1 + iω
+

1

1− iω

)
=

√
2

π

1

1 + ω2
≥ 0
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Linear Regression in Feature Space

Regression Problem

• Patterns x1, . . . ,xm together with target values y1, . . . , ym.

• Quadratic loss function c(x, y, f(x)) = 1
2(y − f (x))2.

• Linear model in feature space f (x) = 〈w,Φ(x)〉, hence Φ and kernel k.

• Quadratic regularizer of the form Ω[f ] = 1
2‖w‖

2.

• Regularization constant λ.

Goal

Minimize the regularized risk functional

Rreg[f ] =
1

m

m∑
i=1

1

2
(yi − f (xi))

2 +
λ

2
‖w‖2
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Linear Regression in Feature Space, II

Regularized Risk

Rreg[f ] =
1

m

m∑
i=1

1

2
(yi − 〈w,Φ(x)〉)2 +

λ

2
‖w‖2

We compute the derivative with respect to w. For optimality we need

∂wRreg[f ] =
1

m

m∑
i=1

(f (xi)− yi)Φ(xi) + λw = 0

Kernel Expansion

The above equation shows that w can be expanded in terms of Φ(xi). We obtain

w =
∑m

i=1 αiΦ(xi) which implies that

f (x) =

〈
m∑
i=1

αiΦ(xi),Φ(x)

〉
=

m∑
i=1

αi〈Φ(xi),Φ(x)〉 =

m∑
i=1

αik(xi,x).

This means that f is given by a kernel expansion at the patterns xi.
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Linear Regression in Feature Space, III

Solving the Expansion

It follows that αi is given by

αi =
1

mλ
(yi − f (xi)) =

1

mλ

yi − m∑
j=1

αjk(xj,xi)


In vector notation this reads as

α =
1

λm
(y −Kα) and therefore α = (K + λm1)−1y

Interpretation

This equation resembles the one obtained in the linear case, only that now we re-

placed XX>, the outer product between the observations with the kernel matrix.

Important Observation

This estimator is one of the currently best regression estimators available. In doubt,

use it rather than Neural Networks.
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