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Linear Functions

Linear Function

Denote by x,w ∈ Rd and b ∈ R. Then a linear function is given by

f (x) = 〈w,x〉 + b

Generalized Linear Function

Denote by f1, . . . , fn n arbitrary functions X→ R, then a generalized linear function

is given by

f (x) =

n∑
i=1

αifi(x)

Connection

Set n = d + 1, fi(x) = xi (coordinate projections), and fd+1 = 1. Then Linear

Functions are a special case of Generalized Linear Functions.
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Things you can do with Linear Functions

Linear Estimators

We find a linear mapping from X into R (of course, that’s the most boring applica-

tions).

Hyperplanes

A linear function defines a hyperplane H by

H := {x|〈w,x〉 = c}
This is the set of all points with distance c

‖w‖ from the origin along the vector w.

Proof: for point along the line αw with 〈αw,w〉 = c we have α = c
‖w‖2

d(0, αw)2 = ‖αw‖2 = |α|2〈w,w〉 =
c2

‖w‖2

Half-Spaces

Likewise we can define spaces by

H := {x|〈w,x〉 ≤ c} or H := {x|〈w,x〉 ≤ c}
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Feature Extraction

Idea

Sometimes problems may not be linearly separable, yet a simple solution may exist

in terms of some specific features (a possible way of inserting prior knowledge).

Example

The number of loops in a character can be used to distinguish between 0, 1, 8, the

number of intersections will help us to deal with 4 and 6, too, . . .

Nonlinearization

We use a feature extractor Φ : X → F with x → Φ(x). So all we have to do is

replace every occurence of x by Φ(x) to obtain a nonlinear estimator. We

get f (x) = 〈w,Φ(x)〉 + b and for w =
∑m

i=1 αiΦ(xi) this leads to

f (x) =

〈
m∑
i=1

αiΦ(xi),Φ(x)

〉
+ b =

m∑
i=1

αi〈Φ(xi),Φ(x)〉 + b
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Examples

Two Interlocking Spirals

If we transform the data (x1, x2) into a radial part (r =
√
x2

1 + x2
2) and an angular

part (x1 = r cosφ, x1 = r sinφ), the problem becomes much easier to solve (we only

have to distinguish different stripes).

Japanese Character Recognition

Break down the images into strokes and recognize it from the latter (there’s a pre-

defined order which can be useful).

Medical Diagnosis

Include physician’s comments, knowledge about unhealthy combinations, detect the

presence of certain features (EEG), . . .

Suitable Rescaling

If we observe, say the weight and the height of a person (e.g. measured in centimeters

or in meters), typically rescaling with zero mean and unit variance is a good idea.
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The Polynomial Features ride again

Quadratic Features in R2

Φ(x) :=
(
x2

1,
√

2x1x2, x
2
2

)
Dot Product

〈Φ(x),Φ(x′)〉 =
〈(
x2

1,
√

2x1x2, x
2
2

)
,
(
x′1

2
,
√

2x′1x
′
2, x
′
2
2
)〉

= 〈x, x′〉2.

This trick does not only work for 2nd order polynomials but for any 〈x, x′〉d.
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Kernels

Problem

Extracting features can sometimes be very costly. Just imagine computing second

order features in 1000 dimensions. This leads to 5005 numbers, for higher order

polynomial features this is even way worse.

Solution

Don’t compute the features, try to compute dot products implicitly. For some

features this works . . . and those are the ones we use.

Definition

A kernel function k : X×X→ R is a symmetric function in its arguments for which

the following property holds

k(x,x′) = 〈Φ(x),Φ(x′)〉 for some feature map Φ.

The hope is that k(x,x′) will be much cheaper to compute than Φ(x).
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Kernel Matrix

Basic Idea

To compare observations we compute dot products (recall the perceptron algo-

rithms). There the dot product matrix K given by Kij = 〈xi,xj〉. This is trans-

formed into

Kij = 〈Φ(xi),Φ(xj)〉 = k(xi,xj)

where xi are the training patterns xi.

Similarity Measure

The entries Kij tell us the amount of overlap between Φ(xi) and Φ(xj), so, in a

sense, k(xi,xj) is a similarity measure.

Distance in Feature Space

We get a distance measure between points in feture space Φ(x) and Φ(x′) via

d(x,x′)2 := ‖Φ(x)− Φ(x′)‖2 = 〈Φ(x),Φ(x)〉 − 2〈Φ(x),Φ(x′)〉 + 〈Φ(x′),Φ(x′)〉
= k(x,x) + k(x′,x′)− 2k(x,x)
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Kernel Matrix, Part II

The Kernel Matrix is Positive Semidefinite

We have α>Kα ≥ 0 for all α ∈ Rm and all kernel matrices K ∈ Rm×m. This is so

since
m∑
i,j

αiαjKij =

m∑
i,j

αiαj〈Φ(xi),Φ(xj)〉

=

〈
m∑
i

αiΦ(xi),
m∑
j

αjΦ(xj)

〉
=

∥∥∥∥∥
m∑
i=1

αiΦ(xi)

∥∥∥∥∥
2

≥ 0

Kernel Expansion

For a function given by f (x) = 〈w,Φ(x)〉 + b with w =

m∑
i=1

αiΦ(xi) we obtain

f (x) = 〈w,Φ(x)〉 + b =

〈
m∑
i=1

αiΦ(xi),Φ(x)

〉
+ b =

m∑
i=1

αik(xi,x) + b.

In particular for the function values f := (f (x1), . . . , f (xm)) we have f = Kα.
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Polynomial Kernels in Rn

Idea

We want to extend k(x,x′) = 〈x,x′〉2 to

k(x,x′) = (〈x,x′〉 + c)
d

where c > 0 and d ∈ N.

For this purpose we have to prove that such a kernel corresponds to a dot product.

Proof Strategy

Stupid and straightforward: we simply compute the explicit sum given by the kernel,

i.e.

k(x,x′) = (〈x,x′〉 + c)
d

=

m∑
i=0

(
d

i

)
(〈x,x′〉)i cd−i

The next step is to show that the individual terms (〈x,x′〉)i are dot products for

some Φi(x).
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Polynomial Kernels in Rn, Part II

Notation

To simplify notation we use the following abbreviations concerning i ∈ Nn and

x ∈ Rn.

i! := i1! · i2! · . . . · in!

xi := xi11 · x
i2
2 · . . . · xinn

|i| := i1 + i2 + . . . + in

Quite often, i is referred to as a multi index.

Brute Force Expansion

(〈x,x′〉)d =
∑
|i|=1

d!

i!
xi(x′)i = 〈Φ(x),Φ(x′)〉

where Φ(x) =

(
. . .
√

d!
i! x

i . . .

)
. This means that we compute dot products cheaply

in the space spanned by all possible polynomial features.
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Are all k(x,x′) good Kernels?

Computability

We have to be able to compute k(x,x′) efficiently (much cheaper than dot products

themselves).

“Nice and Useful” Functions

The features themselves have to be useful for the learning problem at hand. Quite

often this means smooth functions.

Symmetry

Obviously k(x,x′) = k(x′,x) due to the symmetry of the dot product 〈Φ(x),Φ(x′)〉 =

〈Φ(x′),Φ(x)〉.

Dot Product in Feature Space

There has to exist a Φ such that k really is a dot product.
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