

What you can use it for

- pattern recognition (faces, digits, speech),
- bioinformatics (gene finding, introns)
- internet (spam filtering, search engines)
- prediction (stock market)

What you get

- skills in programming, numerical analysis, optimization
- practical experience with data
- easy do-it-yourself algorithms

http://axiom.anu.edu.au/~smola/sise9128/

Overview

Week 1

Linear Algebra, Hilbert Spaces, Numerical Mathematics, Learning Theory, Statistics, Risk Functional, Common Distributions, Perceptron

Week 2

Regression, Squared Loss, Noise Models and Loss, Regularization Kernels, Kernel Perceptron, Kernel Regression

Practical Issues

Scoring

This is a 3 credit point unit. Exercises and programming each count $\frac{1}{4}$, the final exam counts $\frac{1}{2}$.

Problem Sheets

Due Monday at 10am in the mailbox. Late submissions cost 20% a day.

You are expected to work together in groups of 3 and submit **one solution sheet per group**. If you copy from other groups you will not get points for these solutions.

Tutorials

Ben O'Loghlin (ben@syseng.anu.edu.au) will hold the tutorials (Thursday 2-5pm) which include solutions of the exercise sheets and some programming practice with the SVLab toolbox.

Final Exam

Probably Monday, June 18 (slides, personal notes, calculator and tables are OK).

A Crash-Course in Math

Topics

- Vector spaces, Hilbert and Banach Spaces, Metrics and Norms
- Matrices, Eigenvalues, Orthogonal Transformations, Singular Values
- Operators, Operator Norms, Function Spaces revisited

Rationale

• We need this toolbox to describe the functions we will be dealing with and to set up the optimization/learning problems.

Definition 1 (Metric)

Denote by \mathfrak{X} a space. Then $d: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_0^+$ is a metric on \mathfrak{X} if for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathfrak{X}$

- 1. $d(\mathbf{x}, \mathbf{y}) = 0$ is equivalent to $\mathbf{x} = \mathbf{y}$
- 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
- 3. $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (Triangle Inequality)

Example 1 (Trivial Metric)

For arbitrary \mathfrak{X} define $d(\mathbf{x}, \mathbf{y}) = 1$ if $\mathbf{x} \neq \mathbf{y}$ and $d(\mathbf{x}, \mathbf{y}) = 0$ if $\mathbf{x} = \mathbf{y}$.

Example 2 (Manhattan Distance)

For
$$\mathfrak{X} = \mathbb{R}^n$$
 define $d(\mathbf{x}, \mathbf{y}) := \sum_{i=1}^n |x_i - y_i|$.

Definition 2 (Vector Space)

A space X on which for all $\mathbf{x}, \mathbf{y} \in X$ and for all $\alpha \in \mathbb{R}$ the following operations are defined:

- 1. $\mathbf{x} + \mathbf{y} \in \mathcal{X} \ (Addition)$
- 2. $\alpha \mathbf{x} \in \mathcal{X}$ (Multiplication)

Definition 3 (Cauchy Series)

Given a space \mathfrak{X} , a series $\mathbf{x}_i \in \mathfrak{X}$ with $i \in \mathbb{N}$ is a Cauchy series if for any ϵ there exists an n_0 such that for all $m, n \geq n_0$ we have $d(\mathbf{x}_m, \mathbf{x}_n) \leq \varepsilon$.

Definition 4 (Completeness)

A space \mathfrak{X} is complete if the limits of every Cauchy series are elements of \mathfrak{X} . We call $\overline{\mathfrak{X}}$ the completion of \mathfrak{X} , i.e. the union of \mathfrak{X} and all its limits of Cauchy series.

Vector Spaces: Examples

Rational Numbers

Addition and multiplication are obviously OK. However, the space **is not complete**. For instance, we can find a Caucy series of $x_i \in \mathbb{Q}$ converging to $\sqrt{2}$.

Real Numbers

Addition and multiplication are obviously OK. The same holds for limits (recall algebra lectures).

\mathbb{R}^n

Prototypical example of a vector space. addition, multiplication, and limits are obviously OK, e.g., take $\mathfrak{X} = \mathbb{R}^5$ and $\mathbf{x} = (2, 33.4, 4.2, 2.999, 6)$.

Polynomials

Functions such as $f(x) := a + bx + cx^2 + dx^3$ obviously form a vector space. For polynomials of finite order n we can even find a mapping between \mathfrak{X} and \mathbb{R}^n .

Vector Spaces: Examples

Series

series (a_i) of numbers with $a_i \in \mathbb{R}$ and $i \in \mathbb{N}$ are clearly vector spaces.

Fourier Expansions

expansions via the discrete Fourier transform form a vector space where

$$f(x) = \sum_{j=1}^{n} s_j \sin(jx) + c_j \cos(jx)$$

Functions

many classes of functions, e.g., $f:[0,1] \to \mathbb{R}$.

Counterexamples

- $f:[0,1] \to [0,1]$ does not form a vector space!
- \bullet \mathbb{Z} is not a vector space, unless we only allow multiplications by integers.
- The alphabet $\{a, ..., z\}$ is not a vectorspace (still it can be an interesting mathematical object, e.g. when determining similarity of documents).

Banach Spaces

Definition 5 (Norm)

Given a vector space \mathfrak{X} , a mapping $\|\cdot\|: \mathfrak{X} \to \mathbb{R}_0^+$ is called a norm if for all $\mathbf{x}, \mathbf{y} \in \mathfrak{X}$ and all $\alpha \in \mathbb{R}$ it satisfies

- 1. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ (scaling)
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

A mapping $\|\cdot\|$ not satisfying (1) is called **pseudo norm**.

Note that a norm also introduces a **metric** via $d(\mathbf{x}, \mathbf{y}) := ||\mathbf{x} - \mathbf{y}||$.

Definition 6 (Banach Space)

A complete vector space \mathfrak{X} together with a norm $\|\cdot\|$.

Banach Spaces: Examples

ℓ_p^m Spaces

Spaces
Take the \mathbb{R}^m endowed with the norm $\|\mathbf{x}\| := \left(\sum_{i=1}^m |x_i|^p\right)^{\frac{1}{p}}$ where p > 0. Note that in

 \mathbb{R}^m all norms are **equivalent**, i.e. there exist $c, C \in \mathbb{R}^+$ such that

$$c\|\mathbf{x}\|_a \leq \|\mathbf{x}\|_b \leq C\|\mathbf{x}\|_a$$
 for all $\mathbf{x} \in \mathcal{X}$ and likewise $\frac{1}{C}\|\mathbf{x}\|_b \leq \|\mathbf{x}\|_a \leq \frac{1}{c}\|\mathbf{x}\|_b$

ℓ_p Spaces

These are subspaces of $\mathbb{R}^{\mathbb{N}}$ with $\|\mathbf{x}\| := \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$.

Not for all series x_i the sum converges, e.g., $x_i = \frac{1}{i}$ is in ℓ_2 but not in ℓ_1 .

Function Spaces $L_p(\mathfrak{X})$

We replace sums by integrals over $\mathfrak X$ and obtain $||f||:=\left(\int_{\mathfrak X}|f(x)|^pdx\right)^{\frac{1}{p}}$. Again, not for all f this integral is defined, i.e. they are not elements of the corresponding $L_p(\mathfrak{X})$.

Definition 7 (Dot Product)

Given a vector space X, a mapping $\langle \cdot, \cdot \rangle$ with $X \times X \to \mathbb{R}$ which for all $\alpha \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$ satisfies

1.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$
 (symmetry)

2.
$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$
 (linearity)

3.
$$\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$$
 (additivity)

Definition 8 (Hilbert Space)

A complete vector space \mathfrak{X} , endowed with a dot product $\langle \cdot, \cdot \rangle$.

The dot product automatically generates a norm (and a metric) by

 $\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. Thus Hilbert spaces are special case of a Banach space.

These are the spaces we will work with in this lecture.

Hilbert Spaces: Examples

Euclidean Spaces Use standard dot product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ given by $\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{i=1}^n x_i y_i$

Function Spaces $(L_2(X))$ Functions on X with $f: X \to \mathbb{C}$ for all $f \in \mathcal{F}$. Here we can define the dot product for $f, g \in \mathcal{F}$ by $\langle f, g \rangle := \int_X \overline{f(x)} g(x) dx$ Note that we take the complex conjugate of f. Also note that all we did was to replace the sum by an integral. ℓ_2 (Infinite) series of real numbers, $\ell_2 \subset \mathbb{R}^{\mathbb{N}}$. We define a dot product for $\mathbf{x}, \mathbf{y} \in \ell_2$ by

 $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$

Polarization Inequality We can recover the dot product from the norm $\|\mathbf{x}\|$ by computing $\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{y} \rangle$.

Matrices

In the following we assume that a matrix $M \in \mathbb{R}^{m \times n}$ corresponds to a linear map from \mathbb{R}^m to \mathbb{R}^n and is given by its entries $M_{ij} \in \mathbb{R}$.

Symmetry

A symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = M_{ji}$.

Antisymmetry

An antisymmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = -M_{ji}$.

Rank

Denote by I the image of \mathbb{R}^m under $M \in \mathbb{R}^{m \times n}$. Since M is a linear map, we can find a I as a linear combination of vectors. $\operatorname{rank}(M)$ is the smallest number of such vectors that span I.

Orthogonality

A matrix $M \in \mathbb{R}^{m \times m}$ with $M^{\top}M = \mathbf{1}$ is called an orthogonal matrix (if $M \in \mathbb{C}^{m \times m}$ it is called unitary). This means $M^{\top} = M^{-1}$.

Matrices, Part II

Orthogonality, Part II

It consists of mutually orthogonal rows and columns. The corresponding matrix group is often denoted by O(m) (the orthogonal group). If it is only a rotation, it is called SO(m) (special orthogonal group).

Note that from $M^{\top}M = \mathbf{1}$ it also follows that $MM^{\top} = \mathbf{1}$ since $M^{\top}M = \mathbf{1} \Rightarrow (MM^{\top})M = M$ (and all matrices have full rank).

Example

Rotation matrices in \mathbb{R}^2 are given by

$$M = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \text{ here } \det M = 1.$$

Mirror matrices are

$$M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $M = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ here $\det M = 1$.

Matrix Invariants

Trace:

 $\operatorname{tr} M := \sum_{i=1}^m M_{ii}$ One can show $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ and thus for symmetric matrices

$$\operatorname{tr} M = \operatorname{tr}(O^{\top} \Lambda O) = \operatorname{tr}(\Lambda O O^{\top}) = \operatorname{tr} \Lambda = \sum_{i=1}^{m} \lambda_i$$

Determinant:

Antisymmetric multinear form, i.e. swapping columns or rows changes the sign, adding elements in rows and columns is linear. Useful form

$$\det M = \prod_{i=1}^{m} \lambda_i$$

Both trace and determinant are invariant under orthogonal transformations $M \to O^{\top}MO$ where $O \in SO(m)$ for of the matrix.

Matrix Norms

Operator Norm

The norm of a linear operator A between two Banach spaces \mathfrak{X} and \mathfrak{Y} is defined as

$$||A|| := \max_{\mathbf{x} \in \mathcal{X}} \frac{||A\mathbf{x}||}{||\mathbf{x}||}$$

This clearly satisfies all conditions of a norm:

- $\|\alpha A\| = \max_{\mathbf{x} \in \mathcal{X}} \frac{\|\alpha A\mathbf{x}\|}{\|\mathbf{x}\|} = |\alpha| \|A\|.$
- ||A|| = 0 implies $\max_{\mathbf{x} \in \mathcal{X}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = 0$ and thus $A\mathbf{x} = 0$ for all \mathbf{x} . This means that A = 0.

Frobenius Norm

For a matrix $M \in \mathbb{R}^{m \times n}$ we can define a norm in analogy to the vector norm by

$$||M||_{\text{Frob}}^2 = \sum_{i=1}^m \sum_{j=1}^n M_{ij}^2$$

Definition 9 (Eigenvalues, Eigenvectors)

Denote by $M \in \mathbb{R}^{m \times m}$ matrix, then an eigenvalue $\lambda \in \mathbb{R}$ and eigenvector $\mathbf{x} \in \mathbb{R}^m$ satisfy

$$M\mathbf{x} = \lambda \mathbf{x}$$

Analogously for operators $A: \mathcal{X} \to \mathcal{X}$ we have $A\mathbf{x} = \lambda \mathbf{x}$.

Caveat

We cannot always find a complete eigensystem. Example: $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

Symmetric Matrices

All eigenvalues of symmetric matrices are real and symmetric matrices are fully diagonalizable, i.e. we can find m eigenvectors.

Orthogonality:

All eigenvectors of symmetric matrices M with different eigenvalues are mutually orthogonal. Proof: for two eigenvectors \mathbf{x} and \mathbf{x}' with eigenalues λ, λ' use

$$\lambda \mathbf{x}^{\top} \mathbf{x}' = (M \mathbf{x})^{\top} \mathbf{x} = \mathbf{x}^{\top} (M^{\top} \mathbf{x}') = \mathbf{x}^{\top} (M \mathbf{x}') = \lambda' \mathbf{x}^{\top} \mathbf{x}' \text{ hence } \lambda' = \lambda \text{ or } \mathbf{x}^{\top} \mathbf{x}' = 0.$$

Matrix Decomposition:

We can decompose symmetric $M \in \mathbb{R}^{m \times m}$ into $O^{\top} \Lambda O$ where $O \in SO(n)$ and $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$.

Example:

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 has eigenvalues $(-1, 3)$ and eigenvectors $v_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $v_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

Matrix Norms Revisited

Operator Norm: Using $M \in \mathbb{R}^{m \times m}$ we have

$$||M||^{2} = \max_{\mathbf{x} \in \mathbb{R}^{m}} \frac{||M\mathbf{x}||^{2}}{||\mathbf{x}||^{2}}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m}} \max_{\mathbf{x} \in \mathbb{R}^{m}} ||M\mathbf{x}||^{2}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m}} \max_{\mathbf{x} \in \mathbb{R}^{m}} ||\mathbf{x}||^{2}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m}} ||\mathbf{x}|| = 1$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m}} ||\mathbf{x}|| = 1$$

$$= \max_{\mathbf{x}' \in \mathbb{R}^{m}} ||\mathbf{x}'|| = 1$$

$$= \max_{i \in [m]} \lambda_{i}^{2}.$$

Frobenius Norm: Likewise we obtain

$$||M||_{\text{Frob}}^2 = \operatorname{tr}(MM^\top) = \operatorname{tr}O\Lambda O^\top O\Lambda O^\top = \operatorname{tr}\Lambda O^\top O\Lambda O^\top O = \operatorname{tr}\Lambda^2 = \sum_{i=1}^m \lambda_i^2$$

Positive Matrices

Positive Definite Matrix:

A matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^m$ we have

$$\mathbf{x}^{\mathsf{T}} M \mathbf{x} \geq 0 \text{ if } \mathbf{x} \neq 0$$

This matrix has only positive eigenvalues since for all eigenvectors \mathbf{x} we have $\mathbf{x}^{\top} M \mathbf{x} = \lambda \|\mathbf{x}\|^2 > 0$ and thus $\lambda > 0$.

Induced Norms and Metrices:

Every positive definite matrix induces a norm via

$$\|\mathbf{x}\|_M^2 := \mathbf{x}^\top M \mathbf{x}$$

- Linearity is obvious, so is uniqueness
- The triangle inequality can be seen by writing

$$\|\mathbf{x} + \mathbf{x}'\|_{M}^{2} = (\mathbf{x} + \mathbf{x}')^{\top} M^{\frac{1}{2}} M^{\frac{1}{2}} (\mathbf{x} + \mathbf{x}') = \|M^{\frac{1}{2}} (\mathbf{x} + \mathbf{x}')\|^{2}$$

and using the triangle inequality for $M^{\frac{1}{2}}\mathbf{x}$ and $M^{\frac{1}{2}}\mathbf{x}'$.

Idea:

Can we find something similar to the eigenvalue / eigenvector decomposition for arbitrary matrices?

Decomposition:

Without loss of generality assume $m \geq n$ For $M \in \mathbb{R}^{m \times n}$ we may write M as $U \wedge O$ where $U \in \mathbb{R}^{m \times n}$, $O \in \mathbb{R}^{n \times n}$, and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Furthermore $O^{\top}O = OO^{\top} = U^{\top}U = \mathbf{1}$.

Useful Trick:

Nonzero eigenvalues of $M^{\top}M$ and MM^{\top} are the same. This is so since

 $M^{\top}M\mathbf{x} = \lambda\mathbf{x}$ and hence $(MM^{\top})M\mathbf{x} = \lambda M\mathbf{x}$ or equivalently $(MM^{\top})\mathbf{x}' = \lambda\mathbf{x}'$.