SISE 9128: Introduction to Machine Learning

Alex Smola, RSISE ANU
Problem Sheet - Week 1
October 8-19, 2001
The due date for these problems is Thursday, October 11

Problem 1 (SVD, Eigenvalues, and Positive Matrices)

Assume an arbitrary matrix $M \in \mathbb{R}^{m \times n}$ with $m \leq n$.

1. Show that the matrix $M M^{\top}$ is positive semidefinite.
2. Show that the nonzero eigenvalues of $M^{\top} M$ and $M M^{\top}$ are identical. Hint: compute the eigevectors of $M^{\top} M$ from those of $M M^{\top}$.
3. Using the fact that there exist $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{m \times n}$, and a diagonal matrix $\Lambda \in \mathbb{R}^{m \times m}$ for which $M=U \Lambda V$, compute U, Λ, V using the eigenvalue/eigenvector decomposition of $M^{\top} M$ into $O^{\top} \Lambda O$. Here $O \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{m \times m}$ is a diagonal matrix with only positive entries.

Problem 2 (Vector Valued Functions)

Compute the first and second derivatives of the following functions

1. $f(\mathbf{x})=\mathbf{c}^{\top} \mathbf{x}$ where $\mathbf{x}, \mathbf{c} \in \mathbb{R}^{m}$.
2. $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} M \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^{m}$ and $M \in \mathbb{R}^{m}$. What happens if $M=M^{\top}$?
3. $f(X)=\operatorname{tr} M X$ where $M \in \mathbb{R}^{m \times n}$ and $X \in \mathbb{R}^{n \times m}$.
4. $f(\mathbf{x})=g\left(\left\|\mathbf{x}_{0}-\mathbf{x}\right\|\right)$ where $g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ and $\mathbf{x}_{0}, \mathbf{x} \in \mathbb{R}^{m}$.

Problem 3 (Dot Products of Smooth Functions)

Show that the following form is a dot product ($f, g: \mathbb{R} \rightarrow \mathbb{R}$)

$$
\langle f, g\rangle:=\int_{\mathbb{R}} f(x) g(x) d x+\int_{\mathbb{R}} f^{\prime}(x) g^{\prime}(x) d x .
$$

Problem 4 (Hilbert Spaces and Derivatives)

Denote by \mathcal{H} a Hilbert space and by $\langle\cdot, \cdot\rangle$ the dot products in \mathcal{H}.
For $f: \mathcal{H} \rightarrow \mathbb{R}$ with $f(x)=\frac{1}{2}\|x\|^{2}$ show that the Gateaux derivative $\frac{d}{d x} f$ is $\frac{d}{d x} f(x)=x$. Compute the second derivative (hint: this will be an operator).

