SISE 9128: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 1 The due date for these problems is Thursday, October 11 Teaching Period October 8-19, 2001

Problem 1 (SVD, Eigenvalues, and Positive Matrices) Assume an arbitrary matrix $M \in \mathbb{R}^{m \times n}$ with $m \leq n$.

- 1. Show that the matrix MM^{\top} is positive semidefinite.
- 2. Show that the nonzero eigenvalues of $M^{\top}M$ and MM^{\top} are identical. Hint: compute the eigevectors of $M^{\top}M$ from those of MM^{\top} .
- 3. Using the fact that there exist $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{m \times n}$, and a diagonal matrix $\Lambda \in \mathbb{R}^{m \times m}$ for which $M = U\Lambda V$, compute U, Λ, V using the eigenvalue/eigenvector decomposition of $M^{\top}M$ into $O^{\top}\Lambda O$. Here $O \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{m \times m}$ is a diagonal matrix with only positive entries.

Problem 2 (Vector Valued Functions)

Compute the first and second derivatives of the following functions

- 1. $f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$ where $\mathbf{x}, \mathbf{c} \in \mathbb{R}^m$.
- 2. $f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} M \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^m$ and $M \in \mathbb{R}^m$. What happens if $M = M^{\top}$?
- 3. $f(X) = \operatorname{tr} MX$ where $M \in \mathbb{R}^{m \times n}$ and $X \in \mathbb{R}^{n \times m}$.
- 4. $f(\mathbf{x}) = g(\|\mathbf{x}_0 \mathbf{x}\|)$ where $g : \mathbb{R}_0^+ \to \mathbb{R}$ and $\mathbf{x}_0, \mathbf{x} \in \mathbb{R}^m$.

Problem 3 (Dot Products of Smooth Functions)

Show that the following form is a dot product $(f, g : \mathbb{R} \to \mathbb{R})$

$$\langle f,g \rangle := \int_{\mathbb{R}} f(x)g(x)dx + \int_{\mathbb{R}} f'(x)g'(x)dx.$$

Problem 4 (Hilbert Spaces and Derivatives)

Denote by \mathfrak{H} a Hilbert space and by $\langle \cdot, \cdot \rangle$ the dot products in \mathfrak{H} .

For $f : \mathcal{H} \to \mathbb{R}$ with $f(x) = \frac{1}{2} ||x||^2$ show that the Gateaux derivative $\frac{d}{dx}f$ is $\frac{d}{dx}f(x) = x$. Compute the second derivative (hint: this will be an operator).