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Overview

L1: Machine learning and probability theory
Introduction to pattern recognition, classification, regression,
novelty detection, probability theory, Bayes rule, inference

L2: Density estimation and Parzen windows
Nearest Neighbor, Kernels density estimation, Silverman’s
rule, Watson Nadaraya estimator, crossvalidation

L3: Perceptron and Kernels
Hebb’s rule, perceptron algorithm, convergence, kernels

L4: Support Vector estimation
Geometrical view, dual problem, convex optimization, kernels

L5: Support Vector estimation
Regression, Quantile regression, Novelty detection, ν-trick

L6: Structured Estimation
Sequence annotation, web page ranking, path planning,
implementation and optimization
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L4 Support Vector Classification

Support Vector Machine
Problem definition
Geometrical picture
Optimization problem

Optimization Problem
Hard margin
Convexity
Dual problem
Soft margin problem
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Classification

Data
Pairs of observations (xi , yi) generated from some
distribution P(x , y), e.g., (blood status, cancer), (credit
transaction, fraud), (profile of jet engine, defect)

Task
Estimate y given x at a new location.
Modification: find a function f (x) that does the task.
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So Many Solutions
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One to rule them all . . .
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Optimal Separating Hyperplane
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Optimization Problem

Margin to Norm
Separation of sets is given by 2

‖w‖ so maximize that.
Equivalently minimize 1

2‖w‖.
Equivalently minimize 1

2‖w‖
2.

Constraints
Separation with margin, i.e.

〈w , xi〉+ b ≥ 1 if yi = 1
〈w , xi〉+ b ≤ −1 if yi = −1

Equivalent constraint

yi(〈w , xi〉+ b) ≥ 1
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Optimization Problem

Mathematical Programming Setting
Combining the above requirements we obtain

minimize
1
2
‖w‖2

subject to yi(〈w , xi〉+ b)− 1 ≥ 0 for all 1 ≤ i ≤ m

Properties
Problem is convex
Hence it has unique minimum
Efficient algorithms for solving it exist
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Lagrange Function

Objective Function
1
2
‖w‖2.

Constraints ci(w , b) := 1− yi(〈w , xi〉+ b) ≤ 0
Lagrange Function

L(w , b, α) = PrimalObjective +
∑

i

αici

=
1
2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w , xi〉+ b))

Saddle Point Condition
Derivatives of L with respect to w and b must vanish.
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Support Vector Machines

Optimization Problem

minimize
1
2

m∑
i,j=1

αiαjyiyj〈xi , xj〉−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0

Support Vector Expansion

w =
∑

i

αiyixi and hence f (x) =
m∑

i=1

αiyi 〈xi , x〉+ b

Kuhn Tucker Conditions

αi(1− yi(〈xi , x〉+ b)) = 0
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Proof (optional)

Lagrange Function

L(w , b, α) =
1
2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w , xi〉+ b))

Saddlepoint condition

∂wL(w , b, α) = w −
m∑

i=1

αiyixi = 0 ⇐⇒ w =
m∑

i=1

αiyixi

∂bL(w , b, α) = −
m∑

i=1

αiyixi = 0 ⇐⇒
m∑

i=1

αiyi = 0

To obtain the dual optimization problem we have to substitute
the values of w and b into L. Note that the dual variables αi

have the constraint αi ≥ 0.
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Proof (optional)

Dual Optimization Problem
After substituting in terms for b, w the Lagrange function
becomes

− 1
2

m∑
i,j=1

αiαjyiyj〈xi , xj〉+
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m

Practical Modification
Need to maximize dual objective function. Rewrite as

minimize
1
2

m∑
i,j=1

αiαjyiyj〈xi , xj〉 −
m∑

i=1

αi

subject to the above constraints.
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Support Vector Expansion

Solution in w =
m∑

i=1

αiyixi

w is given by a linear combination of training patterns xi .
Independent of the dimensionality of x .
w depends on the Lagrange multipliers αi .

Kuhn-Tucker-Conditions
At optimal solution Constraint · Lagrange Multiplier = 0
In our context this means

αi(1− yi(〈w , xi〉+ b)) = 0.

Equivalently we have

αi 6= 0 ⇐⇒ yi (〈w , xi〉+ b) = 1

Only points at the decision boundary can contribute
to the solution.
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Mini Summary

Linear Classification
Many solutions
Optimal separating hyperplane
Optimization problem

Support Vector Machines
Quadratic problem
Lagrange function
Dual problem

Interpretation
Dual variables and SVs
SV expansion
Hard margin and infinite weights
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Kernels

Nonlinearity via Feature Maps
Replace xi by Φ(xi) in the optimization problem.

Equivalent optimization problem

minimize
1
2

m∑
i,j=1

αiαjyiyjk(xi , xj)−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0

Decision Function

w =
m∑

i=1

αiyiΦ(xi) implies

f (x) = 〈w , Φ(x)〉+ b =
m∑

i=1

αiyik(xi , x) + b.
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Examples and Problems

Advantage
Works well when the data is
noise free.

Problem
Already a single wrong
observation can ruin
everything — we require
yi f (xi) ≥ 1 for all i .

Idea
Limit the influence of
individual observations by
making the constraints less
stringent (introduce slacks).
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Optimization Problem (Soft Margin)

Recall: Hard Margin Problem

minimize
1
2
‖w‖2

subject to yi(〈w , xi〉+ b)− 1 ≥ 0

Softening the Constraints

minimize
1
2
‖w‖2 + C

m∑
i=1

ξi

subject to yi(〈w , xi〉+ b)− 1+ξi ≥ 0 and ξi ≥ 0
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Linear SVM C = 1
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Linear SVM C = 2
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Linear SVM C = 5
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Linear SVM C = 10
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Linear SVM C = 20
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Linear SVM C = 50
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Linear SVM C = 100
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Linear SVM C = 1
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Linear SVM C = 2
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Linear SVM C = 5
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Linear SVM C = 10
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Linear SVM C = 20
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Linear SVM C = 50
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Linear SVM C = 100
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Linear SVM C = 1
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Linear SVM C = 2
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Linear SVM C = 5
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Linear SVM C = 10
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Linear SVM C = 20
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Linear SVM C = 50
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Linear SVM C = 100
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Linear SVM C = 1

Alexander J. Smola: An Introduction to Machine Learning 40 / 77



Linear SVM C = 2
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Linear SVM C = 5
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Linear SVM C = 10
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Linear SVM C = 20
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Linear SVM C = 50
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Linear SVM C = 100

Alexander J. Smola: An Introduction to Machine Learning 46 / 77



Insights

Changing C
For clean data C doesn’t matter much.
For noisy data, large C leads to narrow margin (SVM
tries to do a good job at separating, even though it isn’t
possible)

Noisy data
Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Python pseudocode

SVM Classification
import elefant.kernels.vector
# linear kernel
k = elefant.kernels.vector.CLinearKernel()
# Gaussian RBF kernel
k = elefant.kernels.vector.CGaussKernel(rbf)

import elefant.estimation.svm.svmclass as
svmclass
svm = svmclass.SVC(C, kernel=k)

alpha, b = svm.Train(x, y)
ytest = svm.Test(xtest)
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Dual Optimization Problem

Optimization Problem

minimize
1
2

m∑
i,j=1

αiαjyiyjk(xi , xj)−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and C ≥ αi ≥ 0 for all 1 ≤ i ≤ m

Interpretation
Almost same optimization problem as before
Constraint on weight of each αi (bounds influence of
pattern).
Efficient solvers exist (more about that tomorrow).
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SV Classification Machine
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Gaussian RBF with C = 0.1
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Gaussian RBF with C = 0.2
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Gaussian RBF with C = 0.4
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Gaussian RBF with C = 0.8
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Gaussian RBF with C = 1.6
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Gaussian RBF with C = 3.2
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Gaussian RBF with C = 6.4

Alexander J. Smola: An Introduction to Machine Learning 57 / 77



Gaussian RBF with C = 12.8
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Insights

Changing C
For clean data C doesn’t matter much.
For noisy data, large C leads to more complicated
margin (SVM tries to do a good job at separating, even
though it isn’t possible)
Overfitting for large C

Noisy data
Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Gaussian RBF with σ = 1
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Gaussian RBF with σ = 2
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Gaussian RBF with σ = 5
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Gaussian RBF with σ = 10
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Insights

Changing σ

For clean data σ doesn’t matter much.
For noisy data, small σ leads to more complicated
margin (SVM tries to do a good job at separating, even
though it isn’t possible)
Lots of overfitting for small σ

Noisy data
Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Summary

Support Vector Machine
Problem definition
Geometrical picture
Optimization problem

Optimization Problem
Hard margin
Convexity
Dual problem
Soft margin problem
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