
An Introduction to Machine Learning
L3: Perceptron and Kernels

Alexander J. Smola

Statistical Machine Learning Program
Canberra, ACT 0200 Australia

Alex.Smola@nicta.com.au

Tata Institute, Pune, January 2007

Alexander J. Smola: An Introduction to Machine Learning 1 / 40

Overview

L1: Machine learning and probability theory
Introduction to pattern recognition, classification, regression,
novelty detection, probability theory, Bayes rule, inference

L2: Density estimation and Parzen windows
Nearest Neighbor, Kernels density estimation, Silverman’s
rule, Watson Nadaraya estimator, crossvalidation

L3: Perceptron and Kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernels

L4: Support Vector estimation
Geometrical view, dual problem, convex optimization, kernels

L5: Support Vector estimation
Regression, Quantile regression, Novelty detection, ν-trick

L6: Structured Estimation
Sequence annotation, web page ranking, path planning,
implementation and optimization

Alexander J. Smola: An Introduction to Machine Learning 2 / 40

L3 Perceptron and Kernels

Hebb’s rule
positive feedback
perceptron convergence rule

Hyperplanes
Linear separability
Inseparable sets

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Kernel perceptron

Alexander J. Smola: An Introduction to Machine Learning 3 / 40

Biology and Learning

Basic Idea
Good behavior should be rewarded, bad behavior
punished (or not rewarded).
This improves the fitness of the system.
Example: hitting a tiger should be rewarded . . .
Correlated events should be combined.
Example: Pavlov’s salivating dog.

Training Mechanisms
Behavioral modification of individuals (learning):
Successful behavior is rewarded (e.g. food).
Hard-coded behavior in the genes (instinct):
The wrongly coded animal dies.

Alexander J. Smola: An Introduction to Machine Learning 4 / 40

Neurons

Soma
Cell body. Here the signals
are combined (“CPU”).

Dendrite
Combines the inputs from
several other nerve cells
(“input bus”).

Synapse
Interface between two neurons (“connector”).

Axon
This may be up to 1m long and will transport the activation
signal to nerve cells at different locations (“output cable”).

Alexander J. Smola: An Introduction to Machine Learning 5 / 40

Perceptron

Alexander J. Smola: An Introduction to Machine Learning 6 / 40

Perceptrons

Weighted combination
The output of the neuron is a linear combination of the
inputs (from the other neurons via their axons) rescaled
by the synaptic weights.
Often the output does not directly correspond to the
activation level but is a monotonic function thereof.

Decision Function
At the end the results are combined into

f (x) = σ

(
n∑

i=1

wixi + b

)
.

Alexander J. Smola: An Introduction to Machine Learning 7 / 40

Separating Half Spaces

Linear Functions
An abstract model is to assume that

f (x) = 〈w , x〉+ b

where w , x ∈ Rm and b ∈ R.
Biological Interpretation

The weights wi correspond to the synaptic weights (activating
or inhibiting), the multiplication corresponds to the
processing of inputs via the synapses, and the summation is
the combination of signals in the cell body (soma).

Applications
Spam filtering (e-mail), echo cancellation (old analog
overseas cables)

Learning
Weights are “plastic” — adapted via the training data.

Alexander J. Smola: An Introduction to Machine Learning 8 / 40

Linear Separation

Alexander J. Smola: An Introduction to Machine Learning 9 / 40

Perceptron Algorithm

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w , b) = Perceptron(X , Y)
initialize w , b = 0
repeat

Pick (xi , yi) from data
if yi(w · xi + b) ≤ 0 then

w ′ = w + yixi

b′ = b + yi

until yi(w · xi + b) > 0 for all i
end

Alexander J. Smola: An Introduction to Machine Learning 10 / 40

Interpretation

Algorithm
Nothing happens if we classify (xi , yi) correctly
If we see incorrectly classified observation we update
(w , b) by yi(xi , 1).
Positive reinforcement of observations.

Solution
Weight vector is linear combination of observations xi :

w ←− w + yixi

Classification can be written in terms of dot products:

w · x + b =
∑
j∈E

yjxj · x + b

Alexander J. Smola: An Introduction to Machine Learning 11 / 40

Theoretical Analysis

Incremental Algorithm
Already while the perceptron is learning, we can use it.

Convergence Theorem (Rosenblatt and Novikoff)
Suppose that there exists a ρ > 0, a weight vector w∗

satisfying ‖w∗‖ = 1, and a threshold b∗ such that

yi (〈w∗, xi〉+ b∗) ≥ ρ for all 1 ≤ i ≤ m.

Then the hypothesis maintained by the perceptron algorithm
converges to a linear separator after no more than

(b∗2 + 1)(R2 + 1)

ρ2

updates, where R = maxi ‖xi‖.

Alexander J. Smola: An Introduction to Machine Learning 12 / 40

Solutions of the Perceptron

Alexander J. Smola: An Introduction to Machine Learning 13 / 40

Interpretation

Learning Algorithm
We perform an update only if we make a mistake.

Convergence Bound
Bounds the maximum number of mistakes in total. We
will make at most (b∗2 + 1)(R1 + 1)/ρ2 mistakes in the
case where a “correct” solution w∗, b∗ exists.
This also bounds the expected error (if we know ρ, R,
and |b∗|).

Dimension Independent
Bound does not depend on the dimensionality of X.

Sample Expansion
We obtain x as a linear combination of xi .

Alexander J. Smola: An Introduction to Machine Learning 14 / 40

Realizable and Non-realizable Concepts

Realizable Concept
Here some w∗, b∗ exists such that y is generated by
y = sgn (〈w∗, x〉+ b). In general realizable means that the
exact functional dependency is included in the class of
admissible hypotheses.

Unrealizable Concept
In this case, the exact concept does not exist or it is not
included in the function class.

Alexander J. Smola: An Introduction to Machine Learning 15 / 40

The XOR Problem

Alexander J. Smola: An Introduction to Machine Learning 16 / 40

Mini Summary

Perceptron
Separating halfspaces
Perceptron algorithm
Convergence theorem
Only depends on margin, dimension independent

Pseudocode
for i in range(m):

ytest = numpy.dot(w, x[:,i]) + b
if ytest * y[i] <= 0:

w += y[i] * x[:,i]
b += y[i]

Alexander J. Smola: An Introduction to Machine Learning 17 / 40

Nonlinearity via Preprocessing

Problem
Linear functions are often too simple to provide good
estimators.

Idea
Map to a higher dimensional feature space via
Φ : x → Φ(x) and solve the problem there.
Replace every 〈x , x ′〉 by 〈Φ(x), Φ(x ′)〉 in the perceptron
algorithm.

Consequence
We have nonlinear classifiers.
Solution lies in the choice of features Φ(x).

Alexander J. Smola: An Introduction to Machine Learning 18 / 40

Nonlinearity via Preprocessing

Features
Quadratic features correspond to circles, hyperbolas and
ellipsoids as separating surfaces.

Alexander J. Smola: An Introduction to Machine Learning 19 / 40

Constructing Features

Idea
Construct features manually. E.g. for OCR we could use

Alexander J. Smola: An Introduction to Machine Learning 20 / 40

More Examples

Two Interlocking Spirals
If we transform the data (x1, x2) into a radial part
(r =

√
x2

1 + x2
2) and an angular part (x1 = r cos φ,

x1 = r sin φ), the problem becomes much easier to solve (we
only have to distinguish different stripes).

Japanese Character Recognition
Break down the images into strokes and recognize it from the
latter (there’s a predefined order of them).

Medical Diagnosis
Include physician’s comments, knowledge about unhealthy
combinations, features in EEG, . . .

Suitable Rescaling
If we observe, say the weight and the height of a person,
rescale to zero mean and unit variance.

Alexander J. Smola: An Introduction to Machine Learning 21 / 40

Perceptron on Features

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w , b) = Perceptron(X , Y , η)
initialize w , b = 0
repeat

Pick (xi , yi) from data
if yi(w · Φ(xi) + b) ≤ 0 then

w ′ = w + yiΦ(xi)
b′ = b + yi

until yi(w · Φ(xi) + b) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yj(Φ(xj) · Φ(x)) + b

Alexander J. Smola: An Introduction to Machine Learning 22 / 40

Problems with Constructing Features

Problems
Need to be an expert in the domain (e.g. Chinese
characters).
Features may not be robust (e.g. postman drops letter in
dirt).
Can be expensive to compute.

Solution
Use shotgun approach.
Compute many features and hope a good one is among
them.
Do this efficiently.

Alexander J. Smola: An Introduction to Machine Learning 23 / 40

Polynomial Features

Quadratic Features in R2

Φ(x) :=
(

x2
1 ,
√

2x1x2, x2
2

)
Dot Product

〈Φ(x), Φ(x ′)〉 =
〈(

x2
1 ,
√

2x1x2, x2
2

)
,
(

x ′1
2
,
√

2x ′1x ′2, x ′2
2
)〉

= 〈x , x ′〉2.
Insight

Trick works for any polynomials of order d via 〈x , x ′〉d .

Alexander J. Smola: An Introduction to Machine Learning 24 / 40

Kernels

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polynomial
features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X× X→ R is a symmetric function in its
arguments for which the following property holds

k(x , x ′) = 〈Φ(x), Φ(x ′)〉 for some feature map Φ.

If k(x , x ′) is much cheaper to compute than Φ(x) . . .
Alexander J. Smola: An Introduction to Machine Learning 25 / 40

Polynomial Kernels in Rn

Idea
We want to extend k(x , x ′) = 〈x , x ′〉2 to

k(x , x ′) = (〈x , x ′〉+ c)
d where c > 0 and d ∈ N.

Prove that such a kernel corresponds to a dot product.
Proof strategy

Simple and straightforward: compute the explicit sum given
by the kernel, i.e.

k(x , x ′) = (〈x , x ′〉+ c)
d

=
m∑

i=0

(
d
i

)
(〈x , x ′〉)i cd−i

Individual terms (〈x , x ′〉)i are dot products for some Φi(x).

Alexander J. Smola: An Introduction to Machine Learning 26 / 40

Kernel Perceptron

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function f = Perceptron(X , Y , η)
initialize f = 0
repeat

Pick (xi , yi) from data
if yi f (xi) ≤ 0 then

f (·)← f (·) + yik(xi , ·) + yi

until yi f (xi) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yjk(xj , x) + b.

Alexander J. Smola: An Introduction to Machine Learning 27 / 40

Are all k(x , x ′) good Kernels?

Computability
We have to be able to compute k(x , x ′) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learning
problem at hand. Quite often this means smooth functions.

Symmetry
Obviously k(x , x ′) = k(x ′, x) due to the symmetry of the dot
product 〈Φ(x), Φ(x ′)〉 = 〈Φ(x ′), Φ(x)〉.

Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?

Alexander J. Smola: An Introduction to Machine Learning 28 / 40

Mercer’s Theorem

The Theorem
For any symmetric function k : X× X→ R which is square
integrable in X× X and which satisfies∫

X×X

k(x , x ′)f (x)f (x ′)dxdx ′ ≥ 0 for all f ∈ L2(X)

there exist φi : X→ R and numbers λi ≥ 0 where

k(x , x ′) =
∑

i

λiφi(x)φi(x ′) for all x , x ′ ∈ X.

Interpretation
Double integral is continuous version of vector-matrix-vector
multiplication. For positive semidefinite matrices∑

i

∑
j

k(xi , xj)αiαj ≥ 0

Alexander J. Smola: An Introduction to Machine Learning 29 / 40

Properties of the Kernel

Distance in Feature Space
Distance between points in feature space via

d(x , x ′)2 :=‖Φ(x)− Φ(x ′)‖2

=〈Φ(x), Φ(x)〉 − 2〈Φ(x), Φ(x ′)〉+ 〈Φ(x ′), Φ(x ′)〉
=k(x , x)− 2k(x , x ′) + k(x ′, x ′)

Kernel Matrix
To compare observations we compute dot products, so we
study the matrix K given by

Kij = 〈Φ(xi), Φ(xj)〉 = k(xi , xj)

where xi are the training patterns.
Similarity Measure

The entries Kij tell us the overlap between Φ(xi) and Φ(xj), so
k(xi , xj) is a similarity measure.

Alexander J. Smola: An Introduction to Machine Learning 30 / 40

Properties of the Kernel Matrix

K is Positive Semidefinite
Claim: α>Kα ≥ 0 for all α ∈ Rm and all kernel matrices
K ∈ Rm×m. Proof:

m∑
i,j

αiαjKij =
m∑
i,j

αiαj〈Φ(xi), Φ(xj)〉

=

〈
m∑
i

αiΦ(xi),
m∑
j

αjΦ(xj)

〉
=

∥∥∥∥∥
m∑

i=1

αiΦ(xi)

∥∥∥∥∥
2

Kernel Expansion
If w is given by a linear combination of Φ(xi) we get

〈w , Φ(x)〉 =

〈
m∑

i=1

αiΦ(xi), Φ(x)

〉
=

m∑
i=1

αik(xi , x).

Alexander J. Smola: An Introduction to Machine Learning 31 / 40

A Counterexample

A Candidate for a Kernel

k(x , x ′) =

{
1 if ‖x − x ′‖ ≤ 1
0 otherwise

This is symmetric and gives us some information about the
proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute the
resulting “kernelmatrix” K . This yields

K =

 1 1 0
1 1 1
0 1 1

 and eigenvalues (
√

2−1)−1, 1 and (1−
√

2).

as eigensystem. Hence k is not a kernel.
Alexander J. Smola: An Introduction to Machine Learning 32 / 40

Some Good Kernels

Examples of kernels k(x , x ′)

Linear 〈x , x ′〉
Laplacian RBF exp (−λ‖x − x ′‖)
Gaussian RBF exp

(
−λ‖x − x ′‖2)

Polynomial (〈x , x ′〉+ c〉)d
, c ≥ 0, d ∈ N

B-Spline B2n+1(x − x ′)
Cond. Expectation Ec[p(x |c)p(x ′|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check that it
is nonnegative.

Alexander J. Smola: An Introduction to Machine Learning 33 / 40

Linear Kernel

Alexander J. Smola: An Introduction to Machine Learning 34 / 40

Laplacian Kernel

Alexander J. Smola: An Introduction to Machine Learning 35 / 40

Gaussian Kernel

Alexander J. Smola: An Introduction to Machine Learning 36 / 40

Polynomial (Order 3)

Alexander J. Smola: An Introduction to Machine Learning 37 / 40

B3-Spline Kernel

Alexander J. Smola: An Introduction to Machine Learning 38 / 40

Mini Summary

Features
Prior knowledge, expert knowledge
Shotgun approach (polynomial features)
Kernel trick k(x , x ′) = 〈φ(x), φ(x ′)〉
Mercer’s theorem

Applications
Kernel Perceptron
Nonlinear algorithm automatically by query-replace

Examples of Kernels
Gaussian RBF
Polynomial kernels

Alexander J. Smola: An Introduction to Machine Learning 39 / 40

Summary

Hebb’s rule
positive feedback
perceptron convergence rule, kernel perceptron

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Mercer’s theorem

Alexander J. Smola: An Introduction to Machine Learning 40 / 40

