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Text analysis and bioinformatics
Text categorization, biological sequences, kernels on
strings, efficient computation, examples

Optimization
Sequential minimal optimization, convex subproblems,
convergence, SVMLight, SimpleSVM

Regression and novelty detection
SVM regression, regularized least mean squares, adap-
tive margin width, novel observations

Practical tricks
Crossvalidation, ν-trick, median trick, data scaling,
smoothness and kernels



L5 Applications
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Microarray Analysis
Data
Classification
Gene Selection

Biological Sequence Analysis
Protein functions
Sequence annotation
String kernels

Document Analysis
Bag of words
Document retrieval
Ordinal regression and ranking



Microarrays for Dummies
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Genes
Think of them as “subroutines” of the cell
Assume that activity of genes tells us something about
cell status
Can only measure amount of mRNA (messenger
RNA), not genes directly.

Goal
Detect disease in cell (e.g. cancer)
Understand cell activity
Understand function of genes

Method
Print “detectors” for mRNA on a glass slide
Pour cell content on it and let react
Measure amount of substance



Microarray Process
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Raw Image
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Processed Microarray Data

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 7



Dimensionality of the Data
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Genes
up to 100,000 on latest devices (Affymetrix)
typically around 1,000 to 10,000, e.g. for cancer diag-
nosis, selective breeding (spotted arrays)
noisy measurements
missing data (measurement, processing, etc.)

Observations
1 to 4 observations per patient, cell, plant, etc.
Few patients, often different labs
Typically 100-200 observations (privacy and ethics)
Sometimes 1,000 observations (mainly plants)

Problems
Data highdimensional, few observations
Biologists want interpretation



Data
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Simple Approach
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SVM Classification
Linear classifier
Solve SVM classification problem using inner product
matrix between observations

Advantages
Small Gram matrix, independent of number of genes:

Kij =

n∑
l=1

xilxjl where n ≥ 10, 000

Easy optimization problem (< 0.1s on laptop)
Solution involves all genes

Problems
Solution involves all genes (bad for interpretation)
Not very reliable



Feature Selection
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Goal
Select genes which are meaningful for problem
Select genes such that tests are cheaper and faster
Select genes to increase reliability of estimate

Problem
Would get “meaningful” results even from random data
(hint: try it with your friendly biologist and watch them
explain random results ...)
For most selection methods, can find datasets where
it breaks.
Useful but use are your own peril!



Iterative Selection Procedures
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Basic Idea
Solve original estimation problem (e.g. via SVM clas-
sification)
Remove least meaningful genes
Repeat procedure

Example: SVM Feature Selection, Guyon et al. 2000
Want to find meaningful genes for classification
Solve linear SVM optimization problem
Pick smallest coordinates in

w =

m∑
i=1

αiyixi

and remove them. Remove 10-20% of them
Repeat procedure with subset of genes



Iterative Selection Procedures
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Example: Wavelet Denoising, Donoho et al. 1995
Run wavelet transform
Remove smallest coefficients. No repeat

Example: Gene Shaving, Hastie et al. 2000
Want to find meaningful genes, maybe also clustering
Perform principal component analysis
Remove genes with small coordinate projections
along leading principal components
Repeat procedure with subset of genes

Result
Correlated genes (aligned with principal component)
Criterion to stop shaving process (use variance)
Repeat process on remainder: find new clusters



Gene Shaving
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Regularization Selection Procedures
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Basic Idea
We want to classify well and that with as few genes as
possible.
Set up optimization problem to reflect that

Optimization Problem
Generic setup

minimize C
m∑
i=1

ξi + Ω[w]

subject to yi(〈w, xi〉 + b) ≥ 1 − ξi and ξi ≥ 0

Regularizer Ω[w] such that many small coefficients
and few large coefficients are preferred.
Need penalty which increases quickly for small wi.



Examples
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SVM regularizer

Ω[w] =

n∑
i=1

w2
i

Feature selection regularizer (Boosting, etc.)

Ω[w] =

n∑
i=1

|wi|

Relevance vector machine regularizer

Ω[w] =

n∑
i=1

− log pγ(wi)

pγ(wi) is the Γ distribution
For details see Tipping et al. 2001
For microarrays see Campbell and Lin, 2003



SVM Regularization
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L1 Regularization
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RVM Regularization
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L0-L1 Regularization (Fung et al. 2002)
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Coordinate Selection Procedures
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Basic Idea
Lots of genes, unreliable, use really simple criterion
Check discriminative power for each gene separately
and pick the top scoring ones

Examples
Difference in means

sj :=
∑
yi=1

xij −
∑
yi=−1

xij

Discriminative variance

sj :=

∑
yi=1 xij −

∑
yi=−1 xij

std{x1j, . . . xmj}
101 other and similar functions . . .



Mini Summary
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Microarray Data
Genes
Data generation

Problems
High dimensional, few observations
Need interpretability

Solution Approaches
Plain vanilla linear SVM
Feature selection by iteration
Feature selection by regularization
Feature selection by coordinate wise choice



Biological Sequences
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Linear chain
Adenine
Guanine
Cytosine
Thymine

Very long chain
105 for bacteria
109 for plants and mam-
mals

Store sequence
...GATTACA ...



Central Dogma
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Structure Prediction
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Primary
Sequence itself

Secondary (structural motifs)
α-helix
β-sheet
Loop, coil (or anything else that doesn’t fit)

Tertiary
3D structure
Packing of secondary structures
Determines function



An Alpha Helix
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An Alpha Helix
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An Alpha Helix
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A Beta Sheet
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Tertiary Structure
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Tertiary Structure
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Myoglobin
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Promoter
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The Problem
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Data
Sequence, something like . . . GATTACA . . .
Information about window length (sometimes)
Information about genes (sometimes)

Goal
secondary structure estimates (local)
locations of promoters and splice sites (local)
3D structure (global)
function (global)
location of genes (local)

Abstract Problem
Given a sequence
Find annotation of it



Challenges
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Why use machine learning
Too complex to be solved from first principles
Some labeled data available
Labeling is very expensive (lots of people in labs
needed)

Challenges for machine learning
Large amounts of data
Large amounts of unlabeled data
Data with lots of structure (sequences, graphs)
Output with lots of structure (trees, sequences,
graphs)
Combination of different data sources and data types



Polynomial Kernel
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Simple Idea
Use polynomial kernel on symbols
Treat symbols as dummy variables
Use window around area of interest

Kernel
Polynomial function

k(x, x′) = (〈x, x′〉 + c)d

This counts the number of matches between se-
quences, raised to the power of d.
Kernel in the space of all matches up to length d.

Improvements
Weigh local matches around region of interest
Use additional side information (e.g. from HMM)



Polynomial Kernel
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String Kernels
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Basic Idea
Local matches more important than long-range
Want to count matches between sequences accord-
ing to their importance (e.g. frequent sequences are
probably not so meaningful)
Want to have flexible weighting function
Do this efficiently

Connection to Natural Language Processing
Biological strings and texts look very similar
Similar problems: annotate and label sequences

Insight
Use the same tools for NLP and Bioinformatics
Works amazingly well

More about the NLP motivation later



Mini Summary
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Data
DNA sequences
Secondary structure sequences
Graphs (alignment between sequences)

Goal
Annotate the sequence
Do it efficiently (large datasets)

Tools
Simple similarity measure
Polynomial kernels
String kernels



String Kernel Basics
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Some Notation
Alphabet: what we build strings from
Sentinel Character: usually $, it terminates the string
Concatenation: xy obtained by assembling strings x, y
Prefix / Sufix: If x = yz then y is a prefix and z is a suffix

Exact Matching Kernels

k(x, x′) :=
∑

svx,s′vx′
wsδs,s′ =

∑
s∈A∗

#s(x)#s(x
′)ws.

Inexact Matching Kernels

k(x, x′) :=
∑

svx,s′vx′
ws,s′ =

∑
s∈A∗

#s(x)#s(x
′)ws,s′.

Counting mismatch much more expensive . . .



String Kernel Examples
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Bag of Characters
ws = 0 for all |s| > 1 counts single characters. Can be
computed in linear time and linear-time predictions

Bag of Words
s is bounded by whitespace. Linear time

Limited Range Correlations
ws = 0 for all |s| > n for length n limited range

K-spectrum kernel
This takes into account substrings of length k (Eskin et
al., 2002), where ws = 0 for all |s| 6= k. Linear time kernel
computation, and quadratic time prediction.

General Case
Quadratic time kernel computation (Haussler, 1998,
Watkins, 1998), cubic time prediction.



Tree Kernels
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Definition (Colins and Duffy, 2001)
Denote by T, T ′ trees and by t |= T a subtree of T , then

k(T, T ′) =
∑

t|=T,t′|=T ′
wtδt,t′.

We count matching subtrees (other definitions possible,
will come to that later).

Problem
We want permutation invariance of unordered trees.
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Solution
Sort trees before computing kernel



Sorting Trees
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Sorting Rules
Assume existence of lexicographic order on labels
Introduce symbols ‘[′, ‘]′ satisfy ‘[′< ‘]′, and that ‘]′, ‘[′<
label(n) for all labels.

Algorithm
For an unlabeled leaf n define tag(n) := [].
For a labeled leaf n define tag(n) := [label(n)].
For an unlabeled node n with children n1, . . . , nc sort
the tags of the children in lexicographical order such
that tag(ni) ≤ tag(nj) if i < j and define

tag(n) = [tag(n1)tag(n2) . . . tag(nc)].

For a labeled node same operations as above

tag(n) = [label(n)tag(n1)tag(n2) . . . tag(nc)].



Sorting Trees in Linear Time
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Example
The trees /.-,()*+
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have label [[][[][]]].

Theorem
1. tag(root) can be computed in (λ + 2)(l log2 l) time and

linear storage in l.
2. Substrings s of tag(root) starting with ‘[′ and ending

with a balanced ‘]′ correspond to subtrees T ′ of T
where s is the tag on T ′.

3. Arbitrary substrings s of tag(root) correspond to subset
trees T ′ of T .

4. tag(root) is invariant under permutations of the leaves
and allows the reconstruction of an unique element of
the equivalence class (under permutation).



Tree to String Conversion
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Consequence
We can compute tree kernel by
1. Converting trees to strings
2. Computing string kernels

Advantages
More general subtree operations possible: we may in-
clude non-balanced subtrees (cutting a slice from a
tree).
Simple storage and simple implementation (dynamic
array suffices)
All speedups for strings work for kernels, too (XML
documents, etc.)



Suffix Trees
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Definition
Compact tree built from all the suffixes of a word. Suffix
tree of ababc
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Properties
Can be built and stored in linear time (Ukkonen, 1995)
Leaves on subtree ≡ matching substrings

Suffix Links
Connections across the tree. Vital for parsing strings
(e.g., if we parsed abracadabra this speeds up the pars-
ing of bracadabra).



Matching Statistics
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Definition
Given strings x, y with |x| = n and |y| = m, the matching
statistics of x with respect to y are defined by v, c ∈ Nn,
where
vi is the length of the longest substring of y matching
a prefix of x[i : n]
vi := i + vi − 1
ci is a pointer to ceil(x[i : vi]) in S(y).

Computable in linear time (Chang and Lawler, 1994).
Example

Matching statistic of abba with respect to S(ababc).
String a b b a

vi 2 1 2 1
ceil(ci) ab b babc$ ab
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Matching Substrings
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Prefixes
w is a substring of x iff there is an i such that w is a prefix
of x[i : n]. The number of occurrences of w in x can be
calculated by finding all such i.

Substrings
The set of matching substrings of x and y is the set of all
prefixes of x[i : vi].

Next Step
If we have a substring w of x, prefixes of w may occur in x
with higher frequency. We need an efficient computation
scheme.



Key Trick
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Assumptions
x and y strings, c and v matching statistics of x w.r.t. y.

W (y, t) =
∑

s∈pref(v)

wus − wu where u = ceil(t) and t = uv.

can be computed in O(1) time for any t.
Theorem
k(x, y) can be computed in O(|x| + |y|) time via

k(x, y) =

|x|∑
i=1

val(x[i : vi])

=

|x|∑
i=1

val(ci) + lvs(floor(x[i : vi]))W (y, x[i : vi])

where val(t) := lvs(floor(t)) ·W (y, t) + val(ceil(t))



W (y, t) in Constant Time
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Length-Dependent Weights
Assume that ws = w|s|, then

W (y, t) =

|t|∑
j=|ceil(t)|

wj − w|ceil(t)| = ω|t| − ω|ceil(t)|

where ωj :=
∑j

i=1wj
Examples

Correlations up to length s. Simply set all weights after
ws to 0.
Exponentially decaying weight
Bounded range
Fixed length correlations (e.g. only of length s)



W (y, t) in Constant Time
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Generic Weights
Simple option: pre-compute the annotation of all suffix
trees beforehand.
Better: build suffix tree on all strings (linear time) and
annotate this tree.
Simplifying assumption for TFIDF weights

ws = φ(|s|)ψ(#s)

W (y, t) =
∑

s∈pref(t)

ws −
∑

s∈pref(ceil(t))

ws

= φ(freq(t))

|t|∑
i=|ceil(t)|+1

φ(i)



Linear Time Prediction
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Problem
For prediction we need to compute f (x) =

∑
i αik(xi, x).

This depends on the number of SVs.
Bad for large databases (e.g., spam filtering). The
classifier degrades in runtime, the more data we have.
We are repeatedly parsing s

Idea
We can merge matching weights from all the SVs. All we
need is a compressed lookup function.



Linear Time Prediction
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Merge all SVs into one suffix tree Σ.
Compute matching statistics of x wrt. Sigma.
Update weights on every node of Σ as

weight(w) =

m∑
i=1

αilvsxi(w)

Extend the definition of val(x) to Σ via

valΣ(t) := weight(floor(t))·W (Σ, t)+weight(ceil(t)) and valΣ(root) := 0.

Here W (Σ, t) denotes the sum of weights between ceil(t)
and t, with respect to Σ rather than S(y). We only need
to sum over valΣ(x[i : vi]) to compute f .

We can classify texts in linear time regardless of the size of
the SV set!



Mini Summary
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Redux of Tree to String kernels (heaps, stacks, bags,
etc. trivial)
Linear prediction and kernel computation time (previ-
ously quadratic or cubic). Makes things practical.
Storage of SVs needed. Can be greatly reduced if re-
dundancies abound in SV set. E.g. for anagram and
analphabet we need only analphabet and gram.
Coarsening for trees (can be done in linear time, too)
Approximate matching and wildcards
Automata and dynamical systems
Do “expensive” things with string kernel classifiers.



Documents
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Data
Plain text
HTML/XML documents
WWW graph
Structured database records

Goal
Categorize them
Preference relations
Authorship
Annotate them (named entity tagging)



HTML Documents
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XML Data
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Named Entity Recognition
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Authorship
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Features
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Bag of Words
Count number of occurrence of words in document
Useful when trying to detect topics

Example
Mr. Kerry, with strategists in both parties saying he had helped himself in the first of three debates with Mr. Bush, acted at

campaign rallies in Florida as though he had instantly taken the upper hand. He told thousands of screaming Democrats that

Mr. Bush thought he could "fool you all the time" on everything from Iraq to the economy.

2 Bush, 1 Democrats, 1 Florida, 1 Iraq, 1 Kerry, 3 Mr., 1 acted, 1 all, 1 as, 1 at, 1 both, 1 campaign, 1 could, 1 debates, 1

economy , 1 everything, 1 first, 1 fool, 1 from, 2 had, 1 hand, 4 he, 1 helped, 1 himself, 3 in, 1 instantly, 2 of, 1 on, 1 parties,

1 rallies, 1 saying, 1 screaming, 1 strategists, 1 taken, 1 that, 4 the, 1 though, 1 thought, 1 thousands, 1 three, 1 time, 1 to, 1

told, 1 upper, 2 with, 1 you

Features
Sparse feature vector (lots of words do not occur)
Length of document matters
Some frequent words which do not contain much in-
formation (with, in, he, of, the)



Feature transformations
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Problems
Most words are missing
Word frequency counts unreliable
Frequent words are often not informative
Words in various forms (e.g. wish, wishes, wished, big
problem in other languages, e.g. German)
Taking things out of context (bag of words)

Fixes
Use Laplace rule for word counts (i.e. pseudocounts)
Divide document by length
Weigh by inverse document frequency
Use stemming
Use longer range correlations (StringKernel)



Practical Concerns
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Sparse Feature Vector
Store as sparse vector (do not store the zeros) and
use sparse vector-vector multiplication.
SVMLight is pretty good for that

Document Categorization
Use multiclass classifier for multiple categories (SMV-
Light supports it now)
Use hierarchy of classes if available (e.g. for DMOZ:
clothing - formal wear - jackets - dinner jackets)

Named entity tagging
Use window around word to be tagged.
Better method available now (but more complicated:
conditional random fields and Max-Margin-Markov
networks)



Authorship Identification
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Problem
Two collections of documents
Determine whether written by same author
May have tried to obscure identity (or different topics)
No complete set of “other authors” available

Solution
Try distinguishing both collections via SVM classifier
Compute crossvalidation error
Remove top scoring features, Repeat

Result
For identical author, documents are hard to distinguish
For different authors removing top scoring features
does not degrade matters too much.
Train SVM on same-same, same-different pairs.



Naive Bayes Classifier
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Properties
Super simple to implement
Fast
Mediocre performance
Runs on many spam filters

Key Ingredient
Estimator of p(xi|y), that is, probability of occurrence
of words. We get this from individual documents.
Often use Poisson distribution as model



Naive Bayes HOWTO
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Fundamental assumption

p(x|y) =

m∏
i=1

p(xi|y)

That is, word frequency only depends on class label
Bayes Rule

Invoke it to use p(x|y) for

p(y|x) ∝
m∏
i=1

p(xi|y)p(y)

Classifier via odds-ratio
p(y = 1|x)

p(y = −1|x)
=

∏m
i=1 p(xi|y = 1)p(y = 1)∏m

i=1 p(xi|y = −1)p(y = −1)



Mini Summary
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Features
Bag of words
Long range correlations
Use string kernels

Applications
Document categorization
Named entity tagging
Authorship verification

Cheap Alternatives
Naive Bayes classifier
Mediocre performance but very fast and simple



Summary

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 67

Microarray Analysis
Data
Classification
Gene Selection

Biological Sequence Analysis
Protein functions
Sequence annotation
String kernels
Efficient computation via suffix trees

Document Analysis
Bag of words
Document retrieval
Ordinal regression and ranking
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Day 2
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Text analysis and bioinformatics
Text categorization, biological sequences, kernels on
strings, efficient computation, examples

Optimization
Sequential minimal optimization, convex subproblems,
convergence, SVMLight, SimpleSVM

Regression and novelty detection
SVM regression, regularized least mean squares, adap-
tive margin width, novel observations

Practical tricks
Crossvalidation, ν-trick, median trick, data scaling,
smoothness and kernels



L6 Optimization
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Convex Optimization Basics
Convex functions
Optimality and uniqueness
Subspace descent
Numerical math basics

Sequential Minimal Optimization and Chunking
Chunking
Explicit solution
Selection strategy

Stochastic gradient descent
Basic idea
Online SVM
Further applications



Convexity

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 4



Convexity
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Convex Set
A set X is called convex if for any x, x′ ∈ X and any
λ ∈ [0, 1] we have

λx + (1− λ)x′ ∈ X.

Convex Function
A function f defined on a set X (note that X need not
be convex itself) is called convex if for any x, x′ ∈ X and
any λ ∈ [0, 1] such that λx + (1− λ)x′ ∈ X we have

f (λx + (1− λ)x′) ≤ λf (x) + (1− λ)f (x′).

A function f is called strictly convex if the inequality is
strict for λ ∈ (0, 1).



Convex and Nonconvex Sets
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Convex and Nonconvex Functions
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Convex Sets as Below Sets
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Lemma
If f : X → R is a convex function. Then the set

X := {x|x ∈ X and f (x) ≤ c} for some c ∈ R
is convex.



Uniqueness of Minimum
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Key Theorem
Convex function f on convex set X
Consequently f has unique minimum on X

Proof Idea
Assume that there are two minima x and x′

Draw line between them
Use the fact that the function is convex which gives
contradiction.



Newton Method
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Basic Idea
Minimize f (x) using quadratic approximation

f (x + δx) ≈ f (x) + δxf ′(x) +
1

2
(δx)2f ′′(x)

Solve at each step for the minimum explicitly
Repeat x = x− f ′(x)

f ′′(x) until ‖f ′(x)‖ ≤ ε

Convergence of Newton Method
For some region around x∗ it converges quadratically.



Convex Function on Convex Set
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Convex Function on Non-convex Set
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Constrained Optimization

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 13

Optimization Problem

minimize f (x) subject to ci(x) ≤ 0 for all i ∈ [n]

Here ci(x) and f are all convex functions.
Lagrange Function

Convert the constrained optimization problem into sad-
dlepoint problem of the Lagrange function

L(x, α) := f (x) +

n∑
i=1

αici(x) where αi ≥ 0.

Key Theorem
The saddlepoint of L(x, α) is achieved at optimality (x̄, ᾱ)
of the original problem.

L(x̄, α) ≤ L(x̄, ᾱ) ≤ L(x, ᾱ)



Quadratic Programs
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Primal Objective

minimize
1

2
x>Kx + c>x subject to Ax + b ≤ 0

Convexity
Constraints are linear, hence they are convex.
Objective function has derivatives

∂x[. . .] = Kx + c

∂2
x[. . .] = K

This is convex whenever K has no negative eigenval-
ues (OK if K is a kernel matrix).

Good News
Optimizers exist for this.
SVM optimization problem looks exactly like that



Constrained Quadratic Program
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Mini Summary
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Convexity
Definition
Convex functions have unique minimum
Solve by Newton method

Constraints
Need convex constraints
Lagrange function
Saddlepoint property

Quadratic Programs
Quadratic function in objective
Linear constraints
Solvers exist: CPLEX, YALMIP (great MATLAB fron-
tend for lots of other solvers, plus good pointers), MAT-
LAB solver (terrible performance)



Active Set Problem
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Problem
Optimization in all variables is really difficult
Big problem, lots of variables, not enough memory, . . .

Idea
Pick subset of variables (fix the rest) and minimize
over them

Result
Smaller problem, few variables, sometimes can be
solved in closed form.
We always make progress
Iterative procedure for minimization



Active Set Method
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Active Set Method
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Chunking
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Full problem (using K̄ij := yiyjk(xi, xj))

minimize
1

2

m∑
i,j=1

αiαjK̄ij −
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ∈ [0, C] for all 1 ≤ i ≤ m

Constrained problem: pick subset S

minimize
1

2

∑
i,j∈S

αiαjK̄ij −
∑
i∈S

αi

1−
∑
j 6∈S

Kijαj

 + const.

subject to
∑
i∈S

αiyi = −
∑
i 6∈S

αiyi and αi ∈ [0, C] for all i ∈ S



Chunking Variants
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Simple Version
Start with small set, train, keep SVs, add patterns
Great for clean data, e.g. USPS and NIST OCR

General Idea
Take subset S of variables, optimize over them, then
pick next set of variables, repeat.
Good implementation is SVMLight. Works great on
text.

Common Problems
Convergence can be slow. Highly problem depen-
dent .
Which active set should you pick?
Performance degrades with the number of additional
linear constraints (e.g. ν-trick).



Chunking Strategies
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Sequential Minimal Optimization (SMO)
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Basic Idea
Optimize only over pairs of variables.
Need pairs to keep the equality constraints satisfied

Advantage
Analytic solution of subproblems is possible
Simple one-dimensional convex minimization problem

Scaling Behaviour
Large problems solved at only O(m) storage cost
May need to wait for a long time (time scales with
O(mγ) where γ > 2)

Problems
Some formulations are hard to deal with in SMO, e.g.
many nonzero start variables, several constraints at
the same time (as in ν-SVM).



The ugly details
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Quadratic function in one variable
Minimize over x

f (x) =
1

2
ax2 + bx + c

Compute first derivative

f ′(x) = ax + b

and set it to zero x = −b/a

Quadratic function with constraints
Same function as above, just with additional con-
straints C1 ≤ x ≤ C2.
Case 1: −b/a ≤ C1. Here we pick x = C1.
Case 2: C1 ≤ −b/a ≤ C2. Here we pick x = −b/a.
Case 3: C2 ≤ −b/a. Here we pick x = C2.



Three cases
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The ugly details
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Optimization problem in two variables

minimize
αi,αj

1

2

[
α2

iQii + α2
jQjj + 2αiαjQij

]
+ ciαi + cjαj

subject to sαi + αj = γ

0 ≤ αi ≤ Ci and 0 ≤ αj ≤ Cj.

Q, c, γ are obtained from kernel matrix via subproblem.
Key insight

Constrained problem in two variables with linear con-
straint reduces to constrained problem in one variable
without linear constraint.
Can be solved by minimizing quadratic function.
Details see Platt, 1998 or Schölkopf and Smola, 2002



The very ugly details
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A Warmup
Constraints

yi = yj yi 6= yj

L max(0, αold
i + αold

j − Cj) max(0, αold
i − αold

j )
H min(Ci, α

old
i + αold

j ) min(Ci, Cj + αold
i − αold

j )

More definitions

χ := Kii + Kjj − 2sKij where s = yiyj

δ := yi((f (xj)− yj)− (f (xi)− yi))

Unconstrained Solution

ᾱ = αold
i + χ−1δ if χ 6= 0 otherwise ᾱ = − sgn(δ)∞.

Truncated solution

αi = min(max(ᾱ, L, H)) and αj = s(αold
i − αi)− αold

j .



Selecting Points
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Major Loop
Loop through data cyclically until all data approxi-
mately satisfies optimality conditions:
αi = 0 =⇒ xi is correct with margin at least 1.
αi = C =⇒ xi is on the margin or a margin error.
0 < αi < C =⇒ xi is on the margin.

Selection of second point
Errors should be balanced, to make step large:

f (xj)− yj − f (xi) + yi

Determinant should be small (Kii + Kjj − 2sKij). But
that is expensive to check.

Important Trick
Cache function values f (xi) and update them when the
αi, αj change.



Recall: Chunking Strategies
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SVMLight
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Modification
Take more than 2 variables at a time
Invoke an off-the-shelf optimizer on the small prob-
lems

Selection Strategy
Pick points for which αi and the position wrt. the mar-
gin do not match.
Balance selection such that errors are evenly dis-
tributed, i.e. margin errors with αi < C and correct
points with αi > 0.
Cycle through data.

Convergence
Can be shown, see Thorsten Joachims or Chi-Jen Lin.



Mini Summary
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Chunking
Pick subset of the problem and solve.
Smaller problem is easier to solve.
Need to iterate

Sequential Minimal Optimization (SMO)
Pick only two variables at a time
Solve small problem analytically
Pick balanced pair (outer loop sweeping through data,
inner loop, looking for maximum discrepancy)
Easy to implement
Small storage requirement

Other Chunking Variants
SVMLight (picks larger numbers of variables at a time)
Simple chunking (adds support vectors as you go)



Gradient Descent
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Objective Function
Some function f : Rn → R.

Gradient Descent
initial value x0, learning rate λ
repeat

xi+1 = xi − λ∇f (xi)
until ‖∇f (xi+1)‖ ≤ ε

Find direction of steepest descent, take a step, repeat.
Line Search Variant

Replace the update by

xi+1 = xi − λ̂∇f (xi) where λ̂ = argmin
λ

f (xi − λ∇f (xi))

Find direction of steepest descent, walk downhill until it
goes uphill again, repeat.



Problems with Gradient Descent
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Left
Gradient descent takes a long time to converge
Gets trapped in a long and narrow valley (zig-zagging
along the walls of the valley).

Right
Homogeneous structure of the objective function
Gradient descent converges quickly



Fixing It
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Conjugate Directions
Distort the space such that the coordinates become
homogeneous.
Do that in an on-line fashion.
Conjugate gradient descent does that (used a lot for
minimizing quadratic functions).
If function is not quadratic, need to restart periodically.

Stochastic Gradient Descent
Use noisy estimates of gradient
Cheaper to compute (if overall gradient is average of
terms)
Inherent noise gets it out of (not too big) local minima
Often still convergent



Stochastic Gradient Descent
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Stochastic Approximation
Function f : X → R made up of many individual terms

f (x) =
1

m

m∑
i=1

fi(x)

Randomly select one fj at a time and perform gradient
descent with respect to fi.
Update rule

xi+1 = xi − λ∇fj(x)

Advantage
Much cheaper to compute than ∇f
If all fi are somewhat similar less wasteful.
Use fi as loss functions



Margin Loss Function
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Margin loss max(0, y(〈w, φ(x)〉 + b))



SVM Online Learning
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Rewriting the SVM problem

1

m

m∑
i=1

max(0, 1− yi〈φ(xi), w〉) +
λ

2
‖w‖2

Perform stochastic approximation
Replace sum by single term

Compute gradient w.r.t. stochastic approximation

max(0, 1− yi(〈φ(xi), θ〉 + b) +
λ

2
‖w‖2

∂w[. . .] =λw −
{

yiφ(xi) if yi (〈φ(xi), θ〉 + b) < 1
0 otherwise



SVM Online Learning
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Kernel Expansion

〈φ(x), w〉 + b =

m∑
i=1

αi〈φ(xi), φ(x)〉 + b =

m∑
i=1

αik(xi, x) + b

Update in Coefficient Space

αt = −η

{
yi if yi (〈φ(xi), θ〉 + b) < 1
0 otherwise

αi = (1− ηλ)αi for i < t

Finite Time Horizon
λ
2‖w‖

2 ensures that coefficients decay over time
Drop αi after t steps with error at most (1 −
ηλ)t

√
k(xi, xi).

Learning rate η and regularization λ govern length of
history.



Mini Summary
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Problems with gradient descent
Expensive to compute
May not converge quickly
Long valley problem

Stochastic Approximation
Take only one loss term at a time
Perform update in this direction
Quadratic penalty bounds the time horizon
Decrease learning rate for convergence

Kernel expansion
Kernels allow for efficient computation (no feature
space needed)
Only store αi for margin errors



Summary
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Convex Optimization Basics
Convex functions
Optimality and uniqueness
Subspace descent
Numerical math basics

Sequential Minimal Optimization and Chunking
Chunking
Explicit solution
Selection strategy

Stochastic gradient descent
Basic idea
Online SVM
Further applications
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Day 2
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Text analysis and bioinformatics
Text categorization, biological sequences, kernels on
strings, efficient computation, examples

Optimization
Sequential minimal optimization, convex subproblems,
convergence, SVMLight, SimpleSVM

Regression and novelty detection
SVM regression, regularized least mean squares, adap-
tive margin width, novel observations

Practical tricks
Crossvalidation, ν-trick, median trick, data scaling,
smoothness and kernels



L7 Novelty Detection and Regression
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Novelty Detection
Basic idea
Optimization problem
Stochastic Approximation
Examples

LMS Regression
Additive noise
Regularization
Examples
SVM Regression



Novelty Detection
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Data
Observations (xi)
generated from
some P(x), e.g.,

network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.



Applications
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Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),
home alarm (furniture, temperature, windows, etc.)



Novelty Detection via Densities
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Key Idea
Novel data is one that we don’t see frequently.
It must lie in low density regions.

Step 1: Estimate density
Observations x1, . . . , xm

Density estimate via Parzen windows
Step 2: Thresholding the density

Sort data according to density and use it for rejection
Practical implementation: compute

p(xi) =
1

m

∑
j

k(xi, xj) for all i

and sort according to magnitude.
Pick smallest p(xi) as novel points.



Order Statistic of Densities
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Typical Data
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Outliers
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A better way . . .
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Problems
We do not care about estimating the density properly
in regions of high density (waste of capacity).
We only care about the relative density for threshold-
ing purposes.
We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution
Areas of low density can be approximated as the level
set of an auxiliary function. No need to estimate p(x)
directly — use proxy of p(x).
Specifically: find f (x) such that x is novel if f (x) ≤
c where c is some constant, i.e. f (x) describes the
amount of novelty.



Maximum Distance Hyperplane
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Idea Find hyperplane, given by f (x) = 〈w, x〉 + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize
1

2
‖w‖2

subject to 〈w, xi〉 ≥ 1

Soft Margin

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w, xi〉 ≥ 1− ξi

ξi ≥ 0



Dual Problem
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Primal Problem

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w, xi〉 − 1 + ξi ≥ 0 and ξi ≥ 0

Lagrange Function L

Subtract constraints, multiplied by Lagrange multipli-
ers (αi and ηi), from Primal Objective Function.
Lagrange function L has saddlepoint at optimum.

L =
1

2
‖w‖2 + C

m∑
i=1

ξi−
m∑

i=1

αi (〈w, xi〉 − 1 + ξi)−
m∑

i=1

ηiξi

subject to αi, ηi ≥ 0.



Dual Problem
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Optimality Conditions

∂wL = w −
m∑

i=1

αixi = 0 =⇒ w =

m∑
i=1

αixi

∂ξiL = C − αi − ηi = 0 =⇒ αi ∈ [0, C]

Now substitute the optimality conditions back into L.
Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi, xj〉 −
m∑

i=1

αi

subject to αi ∈ [0, C]

All this is only possible due to the convexity of the
primal problem.



The ν-Trick
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Problem
Depending on C, the number of novel points will vary.
We would like to specify the fraction ν beforehand.

Solution
Use hyperplane separating data from the origin

H := {x|〈w, x〉 = ρ}
where the threshold ρ is adaptive .

Intuition
Let the hyperplane shift by shifting ρ
Adjust it such that the ’right’ number of observations is
considered novel.
Do this automatically



The ν-Trick
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Primal Problem

minimize
1

2
‖w‖2 +

m∑
i=1

ξi −mνρ

where 〈w, xi〉 − ρ + ξi ≥ 0

ξi ≥ 0

Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi, xj〉

where αi ∈ [0, 1] and
m∑

i=1

αi = νm.

Similar to SV classification problem, use standard opti-
mizer for it.



USPS Digits
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Better estimates since we only optimize in low density
regions.

Specifically tuned for small number of outliers.

Only estimates of a level-set.

For ν = 1 we get the Parzen-windows estimator back.



A Simple Online Algorithm
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Objective Function

1

2
‖w‖2 +

1

m

m∑
i=1

max(0, ρ− 〈w, φ(xi)〉)− νρ

Stochastic Approximation
1

2
‖w‖2 max(0, ρ− 〈w, φ(xi)〉)− νρ

Gradient

∂w[. . .] =

{
w − φ(xi) if 〈w, φ(xi)〉 < ρ
0 otherwise

∂ρ[. . .] =

{
(1− ν) if 〈w, φ(xi)〉 < ρ
−ν otherwise



Practical Implementation
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Update in coefficients

αj ←(1− η)αj for j 6= i

αi ←
{

ηi if
∑i−1

j=1 αik(xi, xj) < ρ
0 otherwise

ρ =

{
ρ + η(ν − 1) if

∑i−1
j=1 αik(xi, xj) < ρ

ρ + ην otherwise

Using learning rate η.



Online Training Run
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Worst Training Examples
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Worst Test Examples
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Mini Summary
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Novelty Detection via Density Estimation
Estimate density e.g. via Parzen windows
Threshold it at level and pick low-density regions as
novel

Novelty Detection via SVM
Find halfspace bounding data
Quadratic programming solution
Use existing tools

Online Version
Stochastic gradient descent
Simple update rule: keep data if novel, but only with
fraction ν and adjust threshold.
Easy to implement



A simple problem
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Inference
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p(weight|height) =
p(height, weight)

p(height)
∝ p(height, weight)



Bayesian Inference HOWTO
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Conditional probability
If we have conditional probability p(y|x) we can esti-
mate y (here x are the observations and y is what we
want to compute).
For instance, we can get the regression by computing
the mean of p(y|x).

Joint to conditional probability
Joint can be used to get conditional, via Bayes rule

p(x, y) = p(y|x)p(x) and hence p(y|x) =
p(x, y)

p(x)
∝ p(x, y)

Expression only depends on y for fixed x in p(x, y).



Normal Distribution in Rn
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Normal Distribution in R

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
with mean µ ∈ R and variance σ2 ∈ R.

Normal Distribution in Rn

p(x) =
1√

(2π)n det Σ
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
Parameters

µ ∈ Rn is the mean.
Σ ∈ Rn×n is the covariance. Note that this is now a
matrix.
Σ has only nonnegative eigenvalues (i.e. the variance
is never negative).



Inference in Normal Distributions
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Correlated Observations
Assume that the random variables t ∈ Rn, t′ ∈ Rn′ are
jointly normal with mean (µ, µ′) and covariance matrix K

p(t, t′) ∝ exp

(
−1

2

[
t− µ
t′ − µ′

]> [
Ktt Ktt′

K>tt′ Kt′t′

]−1 [
t− µ
t′ − µ′

])
.

Inference
Given t, estimate t′ via p(t′|t). Translation into machine
learning language: we learn t′ from t.

Practical Solution
Since t′|t ∼ N(µ̃, K̃), we only need to collect all terms in
p(t, t′) depending on t′ by matrix inversion, hence

K̃ = Kt′t′ −K>tt′K
−1
tt Ktt′ and µ̃ = µ′ + K>tt′

[
K−1

tt (t− µ)
]︸ ︷︷ ︸

independent of t′



Gaussian Process
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Key Idea
Instead of a fixed set of random variables t, t′ we assume
a stochastic process t : X→ R, e.g. X = Rn.
Previously we had X = {age, height, weight, . . .}.

Definition of a Gaussian Process
A stochastic process t : X → R, where all
(t(x1), . . . , t(xm)) are normally distributed.

Parameters of a GP

Mean µ(x) := E[t(x)]

Covariance Function k(x, x′) := Cov(t(x), t(x′))

Simplifying Assumption
We assume knowledge of k(x, x′) and set µ = 0.



Some Covariance Functions
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Observation
Any function k leading to a symmetric matrix with non-
negative eigenvalues is a valid covariance function.

Necessary and sufficient condition (Mercer’s Theorem)
k needs to be a nonnegative integral kernel.

Examples of kernels k(x, x′)

Linear 〈x, x′〉
Laplacian RBF exp (−λ‖x− x′‖)
Gaussian RBF exp

(
−λ‖x− x′‖2

)
Polynomial (〈x, x′〉 + c〉)d , c ≥ 0, d ∈ N
B-Spline B2n+1(x− x′)

Cond. Expectation Ec[p(x|c)p(x′|c)]



Linear Covariance
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Laplacian Covariance
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Gaussian Covariance
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Polynomial (Order 3)
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B3-Spline Covariance
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Gaussian Processes and Kernels
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Covariance Function
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Describes correlation between pairs of observations

Kernel
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Similarity measure between pairs of observations

Lucky Guess
We suspect that kernels and covariance functions are
the same . . .



The Support Vector Connection
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Gaussian Process on Parameters

t ∼ N(µ, K) where Kij = k(xi, xj)

Linear Model in Feature Space

t(x) = 〈Φ(x), w〉 + µ(x) where w ∼ N(0,1)

The covariance between t(x) and t(x′) is then given by

Ew [〈Φ(x), w〉〈w, Φ(x′)〉] = 〈Φ(x), Φ(x′)〉 = k(x, x′)

Conclusion
A small weight vector in “feature space”, as commonly
used in SVM amounts to observing t with high p(t).

Log prior − log p(t)⇐⇒ Margin ‖w‖2

Will get back to this later again.



Regression
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Simple Model
Assume correlation between t(x) and t(x′) via k(x, x′), so
we can perform regression on t(x′), given t(x).

Recall

p(t, t′) ∝ exp

(
−1

2

[
t
t′

]> [
Ktt Ktt′

K>tt′ Kt′t′

]−1 [
t
t′

])
yields t′|t ∼ N(µ̃, K̃), where

K̃ = Kt′t′ −K>tt′K
−1
tt Ktt′ and µ̃ = K>tt′K

−1
tt t

Proof Idea
t′|t is normally distributed, hence we need only get the
linear and quadratic terms in t′.
Quadratic term via inverse of big covariance matrix.
Linear term (for the mean) has cross terms with t.



Example: Linear Regression

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 38

Linear kernel: k(x, x′) = 〈x, x′〉
Kernel matrix X>X
Mean and covariance

K̃ = X ′>X ′ −X ′>X(X>X)−1X>X ′ = X ′>(1− PX)X ′.

µ̃ = X ′>
[
X(X>X)−1t

]
µ̃ is a linear function of X ′.

Problem
The covariance matrix X>X has at most rank n.
After n observations (x ∈ Rn) the variance vanishes .
This is not realistic .
“Flat pancake” or “cigar” distribution.



Degenerate Covariance
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Additive Noise
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Indirect Model
Instead of observing t(x) we observe y = t(x) + ξ, where
ξ is a nuisance term. This yields

p(Y |X) =

∫ m∏
i=1

p(yi|ti)p(t|X)dt

where we can now find a maximum a posteriori solution
for t by maximizing the integrand (we will use this later).

Additive Normal Noise
If ξ ∼ N(0, σ2) then y is the sum of two Gaussian ran-
dom variables.
Means and variances add up .

y ∼ N(µ, K + σ21).



Training Data
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Mean ~k>(x)(K + σ21)−1y
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Variance k(x, x) + σ2 − ~k>(x)(K + σ21)−1~k(x)
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Putting everything together . . .
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Another Example
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The ugly details
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Covariance Matrices
Additive noise

K = Kkernel + σ21

Predictive mean and variance

K̃ = Kt′t′ −K>tt′K
−1
tt Ktt′ and µ̃ = K>tt′K

−1
tt t

Pointwise prediction

Ktt = K + σ21

Kt′t′ = k(x, x) + σ2

Ktt′ = (k(x1, x), . . . , k(xm, x))

Plug this into the mean and covariance equations.



The Support Vector Connection
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SV Optimization Problem

minimize
1

2
‖w‖2 + C

m∑
i=1

loss(xi, yi, w)

Quadratic Loss
Least mean squares regression

minimize
1

2
‖w‖2 + C

m∑
i=1

loss(yi − 〈φ(xi), w〉)2

Solution

w =

m∑
i=1

αiφ(xi) where α = (K + C−11)y

This is identical to the GP regression (where C = σ−2).



Regression loss functions
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Mini Summary
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Gaussian Process
Like function, just random
Mean and covariance determine the process
Can use it for estimation

Regression
Jointly normal model
Additive noise to deal with error in measurements
Estimate for mean and uncertainty

SV and GP connection
GP kernel and SV kernel are the same
Just different loss functions



Summary
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Novelty Detection
Basic idea
Optimization problem
Stochastic Approximation
Examples

LMS Regression
Additive noise
Regularization
Examples
SVM Regression
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Day 2
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Text analysis and bioinformatics
Text categorization, biological sequences, kernels on
strings, efficient computation, examples

Optimization
Sequential minimal optimization, convex subproblems,
convergence, SVMLight, SimpleSVM

Regression and novelty detection
SVM regression, regularized least mean squares, adap-
tive margin width, novel observations

Practical tricks
Crossvalidation, ν-trick, median trick, data scaling,
smoothness and kernels



L8 Practical Tricks
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Setting Parameters by Crossvalidation
Leave one out estimation again
Overdoing it

ν-trick
Automatically adjusting the margin
Optimization problems

Median trick and data scaling
Scale matters
Encoding data
RBF-kernels

Smoothness and kernels
Fourier transforms
Frequency filters and smoothness



Adjusting Parameters
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Problem
Parameters can have huge impact on performance
(number of errors, LMS error, etc.)
Usually we don’t have the test set when we tune the
parameters (e.g. kernel width, value of C, learning
rate)
Huge bias if we only use training set to adjust terms

Solutions
Use fancy learning theory (too complicated unless you
really know what you’re doing)
Use Bayesian prior (too difficult until you understand
statistics quite well)
Use validation methods (easy to check in practice,
works quite well)



Best number on a dice
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Goal
We want to win at gambling . . .
Determine best face of a dice after observing it m
times (and probability of occurrence).

Idea
Pick best number after watching it m times.
So we choose among n hypotheses

Problem
Number of such occurrences is biased
We want to know how reliable this is

Solution
Use 10-fold crossvalidation
Estimate best number on 9/10 of the data and test on
remaining 1/10. Repeat this for all partitions.



Crossvalidation
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Casting a dice
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Best number on a dice
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Best number on a dice (Crossvalidation)
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Morale of the story
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Confidence intervals
We get 10 noisy estimates of the error, e.g.

0.1 | 0.2 | 0.2 | 0.2 | 0.4 | 0.2 | 0.2 | 0.0 | 0.2 | 0.1
Compute variance and use it as confidence intervals.
In the above case we get

mean 0.18 and standard deviation 0.1
Overdoing it

Testing too many options gives lousy estimates
If possible, use at least 500 observations per parame-
ter combination.



Using it in practice
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Parameters
Pick a set of parameters, e.g. σ2 ∈ {0.1, 0.5, 1, 2, 5}

Cross validation
Compute crossvalidation error for all the parameters
Compute error bars
Pick best one of the figures (within error bars)

Final estimate
Use this set of parameters for final estimate (using all
the data)
Mission accomplished



Mini Summary
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Crossvalidation
Need to set parameters
Use it to estimate performance of method
Theory is complicated
Quick and esay to implement hack

Practical Implementation
Leave out 1/10 of the data and use it as validation set
Cycle through data
Average out and compute variance

Caveat
Don’t compute too many cross validation estimates
Estimates can be very noisy



The ν-trick
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Problem
Which value of C is right for the data
Too small C means lots of training errors (end up us-
ing too simple a classifier, novelty detector, regression
estimator, etc.)
Too large C leads to overfitting (we believe even in the
noisy data).

Solution
Automatic capacity adjustment
Adjust margin such that a certain fraction of points is
an error
Set this fraction to be roughly the expected number of
errors.



Different margins
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Large Margin Classifier
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Standard Formulation

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi (〈w, xi〉 + b) ≥ 1− ξi and ξi ≥ 0

Capacity control by adjusting C
ν-Formulation

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi −mνρ

subject to yi (〈w, xi〉 + b) ≥ ρ− ξi and ξi ≥ 0

Capacity control by adjusting νwhere ν ∈ [0, 1]



The ν-property
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Optimizing ρ

Optimization Problem

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi −mνρ

subject to yi (〈w, xi〉 + b) ≥ ρ− ξi and ξi ≥ 0

Increasing ρ up to where a fraction of at most ν points
violate the constraint decreases the objective function.
Decreasing ρ up to where a fraction of at least 1 − ν
satisfy the constraint decreases the objective function.
In the limit (m →∞) the fractions become exact.



Interpretation
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Dual Problem

minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to
m∑

i=1

αiyi = 0

m∑
i=1

αi = νm

0 ≤ αi ≤ 1

Properties
A large number of coefficients needs to be nonzero
At least νm of them
Different initialization than standard SMO (e.g. via
Parzen windows)



Recall: novelty detection
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Primal Problem

minimize
1

2
‖w‖2 +

m∑
i=1

ξi −mνρ

where 〈w, xi〉 − ρ + ξi ≥ 0

ξi ≥ 0

Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi, xj〉

where αi ∈ [0, 1] and
m∑

i=1

αi = νm.

Almost same problem as before, just with all yi = 1 and
no offset b.



Using it
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Training errors vs. test errors
Want to have similar number of training and test errors
(then the estimator is not overfitting)
Do not try learning training data perfectly (if it is noisy)
Set ν to be order of expected test errors

Good news
Adjusting ν is very robust.
One parameter less to worry about

Bad news
Not every optimizer supports it (choose LibSVM to
have an optimizer)
Some SV books don’t cover it (choose one which does
instead)



Mini Summary

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 20

Basic Idea
Adjust margin automatically.
Optimization solution will follow.

Why
No worries parameter setting.
Safeguard against overfitting.
Control number of novel points in novelty detection
(we set the threshold).
Easier to understand than setting C.



Normal Problem
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Easy Problem
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Hard Problem
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Rescaling Data
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Why
Rescaling can make problem easy or difficult
Often data is heterogeneous (e.g. height, weight, age,
blood pressure, etc.) and not pre-scaled

How
Do not rotate data unless you can assume that coor-
dinates do not matter.
Corollary: do not use PCA unless you’ve got a good
reason to believe that it is useful.
Simply rescale coordinates to zero mean and variance
of same order of magnitude (typically 1, or bounded
variation, etc.)



Example
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Observations
Age: between 10 and 90 years
Weight: between 40 and 150 kg
Height: between 1.4 and 2.2 m
Blood pressure: between 60 and 200

Rescaling to bounded range
Age: subtract 10 and divide by 80
Weight: subtract 40 and divide by 110
. . .

Rescaling to given variance
Subtract mean
Divide by variance



Kernel width

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 26

RBF kernel parameters
Kernel k(x, x′) = k(σ‖x− x′‖)
Keep σ in range where k(σ‖x− x′‖) is interesting.

Example: Gaussian RBF kernel

k(x, x′) = exp

(
− 1

σ2
‖x− x′‖2

)
Set σ such that σ−2‖x− x′‖2 is in the order of 1.

Solution
Measure median pairwise distance ‖xi − xj‖
Practical implementation: pick 1000 random pairs
(xi, xj) and compute distances.
Pick 0.1, 0.5, and 0.9 quantile as candidates for σ
Fine-tuning with crossvalidation



Sample Data
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Pairwise Distances
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Categorical Data
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Rule of thumb
Pick dummy-variable code
Pick Gaussian-RBF kernel

Rationale
Dummy variable code maps data onto points on hy-
percube
Diffusion process on hypercube corresponds to Gaus-
sian RBF kernel.

Example
Data: {Married, Single}, {English, French, German}
(Married, French) 7→ (1,0,0,1,0)
(Single, German) 7→ (0,1,0,0,1)
(Single, English) 7→ (0,1,1,0,0)



Mini Summary
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Data Scaling
Wrong scales make problem difficult
Comparable inputs are important

Kernel Width
Adjust to interesting scale for RBF kernel
Fine tuning via crossvalidation

Categorical Data
If no relation, map into dummy variables
If relation, map into thermometer code



Smoothness and Kernels
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Conundrum
SVM map data into highdimensional space
Still SVM work well and (usually) do not overfit
How do SVMs “choose” the “right complexity”

Solution
Norm in feature space ‖w‖2 corresponds to smooth-
ness of functional
For RBF kernels this means higher order derivatives
of the function f (x) = 〈w, φ(x)〉.
Example: Laplacian kernel corresponds to

‖w‖2 ∝ ‖f‖2
L2

+ ‖∂xf‖2
L2



Smoothness and Fourier Transforms
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RBF Kernels
Kernels of type k(x, x′) = k(‖x− x′‖)
Representation in Fourier Domain (translation invari-
ant setting)

Kernels in Fourier Domain
Compute Fourier transform k̃ of k(·)
This determines the smoothness of k
Functional is

‖f‖2 =

∫
‖f̃ (ω)‖2

k̃(ω)
dω

Small values of k̃(ω) require small terms in f̃ (ω).
Acts like frequency filter



Gaussian RBF Kernel
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Gaussian RBF Kernel - FFT
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B3 Spline Kernel
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B3 Spline Kernel - FFT
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Dirichlet Kernel order 10
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Dirichlet Kernel order 10 - FFT
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Mini Summary
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Smoothness
Norm in feature space is degree of smoothness
SVM solves classification problem while keeping a
simple function

Fourier Transform
Fourier transform shows smoothness of kernel
Positive sign of Fourier transform ensures Mercer
property
Easy to check engineering solution for Mercer’s theo-
rem
Good intuition for suitable kernels



Summary
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Setting Parameters by Crossvalidation
Leave one out estimation again
Overdoing it

ν-trick
Automatically adjusting the margin
Optimization problems

Median trick and data scaling
Scale matters
Encoding data
RBF-kernels

Smoothness and kernels
Fourier transforms
Frequency filters and smoothness
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