An Introduction to Machine Learning with Kernels Lecture 1
 Alexander J. Smola Alex.Smola@nicta.com.au
 +02'00'

Statistical Machine Learning Program National ICT Australia, Canberra

Day 1

Machine learning and probability theory

Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference
Density estimation and Parzen windows
Kernels and density estimation, Silverman's rule, Watson Nadaraya estimator, crossvalidation
Perceptron and kernels
Hebb's rule, perceptron algorithm, convergence, feature maps, kernel trick, examples
Support Vector classification
Geometrical view, dual problem, convex optimization, kernels and SVM

Day 2

Text analysis and bioinformatics

Text categorization, biological sequences, kernels on strings, efficient computation, examples
Optimization
Sequential minimal optimization, convex subproblems, convergence, SVMLight, SimpleSVM
Regression and novelty detection
SVM regression, regularized least mean squares, adaptive margin width, novel observations
Practical tricks
Crossvalidation, ν-trick, median trick, data scaling, smoothness and kernels

L1 Introduction to Machine Learning

Data

- Texts, images, vectors, graphs

What to do with data

- Unsupervised learning (clustering, embedding, etc.)
- Classification, sequence annotation
- Regression, autoregressive models, time series
- Novelty detection

What is not machine learning

- Artificial intelligence
- Rule based inference

Statistics and probability theory

- Probability of an event
- Dependence, independence, conditional probability
- Bayes rule, Hypothesis testing

Data

Vectors

- Collections of features (e.g. height, weight, blood pressure, age, ...)
- Can map categorical variables into vectors (useful for mixed objects)
Matrices
- Images, Movies
- Remote sensing and satellite data (multispectral) Strings
- Documents
- Gene sequences

Structured Objects

- XML documents
- Graphs

$$
\begin{aligned}
& 34861136 \\
& 00471442 \\
& 60433741 \\
& 35002100 \\
& 17920600
\end{aligned}
$$

Reuters Database

```
<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="13522" NEWID="8001">
<DATE>20-MAR-1987 16:54:10.55</DATE>
<TOPICS><D>earn</D></TOPICS>
<PLACES><D>usa</D></PLACES>
<PEOPLE></PEOPLE>
<ORGS></ORGS>
<EXCHANGES></EXCHANGES>
<COMPANIES></COMPANIES>
<UNKNOWND
&#5;&#5;&#5;F
&#22;&#22;&#1;f2479&#31; reute
r f BC-GANTOS-INC-&lt;GTOS>-4TH 03-20 0056</UNKNOWND
<TEXI>&#2;
<TITLE>GANTOS INC &lt;GTOS> 4TH QTR JAN 31 NET</TITLE>
<DATELINE> GRAND RAPIDS, MICH., March 20 -
    </DATELINE<<BODY>Shr 43 cts vs 37 cts
    Net 2,276,000 vs 1,674,000
    Revs }32.6\textrm{mln}\mathrm{ vs 24.4 mln
    Year
    Shr 90 cts vs 69 cts
    Net 4,508,000 vs 3,096,000
    Revs }101.0\textrm{mln}\mathrm{ vs }76.9\textrm{mln
    Avg shrs 5,029,000 vs 4,464,000
    NOTE: }1986\mathrm{ fiscal year ended Feb 1, }198
    Reuter
&#3;</BODY></TEXI>
</REUTERS>
```


Faces

More Faces

Microarray Data

Biological Sequences

 o55'] [[Honorophidium bramii!]

 Lmorgaen

Graphs

Missing Variables

Incomplete Data

- Measurement devices may fail (e.g. dead pixels on camera)
- Measuring things may be expensive (diagnosis for patients)
- Data may be censored

How to fix it

- Clever algorithms (not this course)
- Simple mean imputation (substitute in the average from other observations)
- Works amazingly well (for starters) ...

What to do with data

Unsupervised Learning

- Find clusters of the data
- Find low-dimensional representation of the data (e.g. unroll a swiss roll)
- Find interesting directions in data
- Interesting coordinates and correlations
- Find novel observations / database cleaning

Supervised Learning

- Classification (distinguish apples from oranges)
- Speech recognition
- Regression (tomorrow's stock value)
- Predict time series
- Annotate strings

Clustering

Linear Subspace

Principal Components

Classification

Data

Pairs of observations $\left(x_{i}, y_{i}\right)$ generated from some distribution $\mathrm{P}(x, y)$, e.g., (blood status, cancer), (credit transaction information, fraud), (sound profile of jet engine, defect)
Goal Estimate $y \in\{ \pm 1\}$ given x at a new location. Or find a function $f(x)$ that does the trick.

Regression

Regression

Data
Pairs of observations $\left(x_{i}, y_{i}\right)$ generated from some joint distribution $\operatorname{Pr}(x, y)$, e.g.,

- market index, SP100
- fab parfameters, yield
- user profile, price

Task

Estimate y, given x, such that some loss $c(x, y, f(x))$ is minimized.

Examples

- Quadratic error between y and $f(x)$, i.e. $c(x, y, f(x))=\frac{1}{2}(y-f(x))^{2}$.
- Absolute value, i.e., $c(x, y, f(x))=\mid y-f(x)) \mid$.

Annotating Strings

intron | exon

Annotating Audio

Goal

- Possible meaning of an audio sequence
- Give confidence measure

Example (from Australian Prime Minister's speech)

- a stray alien
- Australian

Novelty Detection

Data

Observations generated from some $\mathrm{P}(x)$, e.g.,

- network usage patterns
- handwritten digits
- alarm sensors
- factory status

Task

Find unusual events, clean database, distinguish typical examples.

$$
\neq \mathbb{M}
$$

$$
0
$$

What Machine Learning is

Logic

- If A meets B and B meets C, does A know C ?
- Rule satisfaction
- Logical rules from data

Artificial Intelligence

- Understanding of the world
- Meet Sunny from I, Robot
- Go and get me a bottle of beer (robot need not understand what it is doing)
Biology and Neuroscience
- Understand the brain by building neural networks?!?
- Model brain and build good systems with that
- Get inspiration from biology but no requirement to build systems like that (e.g. jet planes don't flap wings)

How the brain doesn't work

Statistics and Probability Theory

Why do we need it?

- We deal with uncertain events
- Need mathematical formulation for probabilities
- Need to estimate probabilities from data (e.g. for coin tosses, we only observe number of heads and tails, not whether the coin is really unbiased).
How do we use it?
- Statement about probability that an object is an apple (rather than an orange)
- Probability that two things happen at the same time
- Find unusual events (= low density events)
- Conditional events (e.g. what happens if A, B, and C are true)

Probability

Basic Idea

We have events in a space of possible outcomes. Then $\operatorname{Pr}(X)$ tells us how likely is that an event $x \in X$ will occur. Basic Axioms

- $\operatorname{Pr}(X) \in[0,1]$ for all $X \subseteq X$
- $\operatorname{Pr}(X)=1$
- $\operatorname{Pr}\left(\cup_{i} X_{i}\right)=\sum_{i} \operatorname{Pr}\left(X_{i}\right)$ if $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$

Simple Corollary

$$
\operatorname{Pr}(X \cup Y)=\operatorname{Pr}(X)+\operatorname{Pr}(Y)-\operatorname{Pr}(X \cap Y)
$$

Example

All events

Multiple Variables

Two Sets

Assume that X and y are a probability measure on the product space of X and y. Consider the space of events $(x, x) \in X \times y$.
Independence
If x and y are independent, then for all $X \subset X$ and $Y \subset y$

$$
\operatorname{Pr}(X, Y)=\operatorname{Pr}(X) \cdot \operatorname{Pr}(Y) .
$$

Independent Random Variables

Dependent Random Variables

Bayes Rule

Dependence and Conditional Probability

Typically, knowing x will tell us something about y (think regression or classification). We have

$$
\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)=\operatorname{Pr}(Y, X)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y) .
$$

- Hence $\operatorname{Pr}(Y, X) \leq \min (\operatorname{Pr}(X), \operatorname{Pr}(Y))$.

Bayes Rule

$$
\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(Y)} .
$$

Proof using conditional probabilities

$$
\operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)=\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)
$$

Example

$x \quad x \cap x \quad x$

All events

$$
\operatorname{Pr}\left(X \cap X^{\prime}\right)=\operatorname{Pr}\left(X \mid X^{\prime}\right) \operatorname{Pr}\left(X^{\prime}\right)=\operatorname{Pr}\left(X^{\prime} \mid X\right) \operatorname{Pr}(X)
$$

AIDS Test

How likely is it to have AIDS if the test says so?

- Assume that roughly 0.1% of the population is infected.

$$
p(X=\mathrm{AIDS})=0.001
$$

- The AIDS test reports positive for all infections.

$$
p(Y=\text { test positive } \mid X=\operatorname{AIDS})=1
$$

- The AIDS test reports positive for 1% healthy people.

$$
p(Y=\text { test positive } \mid X=\text { healthy })=0.01
$$

We use Bayes rule to infer $\operatorname{Pr}($ AIDS \mid test positive $)$ via

$$
\begin{aligned}
\frac{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(Y)} & =\frac{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)+\operatorname{Pr}(Y \mid X \backslash X) \operatorname{Pr}(X \backslash X)} \\
& =\frac{1 \cdot 0.001}{1 \cdot 0.001+0.01 \cdot 0.999}=0.091
\end{aligned}
$$

Eye Witness

Evidence from an Eye-Witness

A witness is 90% certain that a certain customer committed the crime. There were 20 people in the bar ...
Would you convict the person?

- Everyone is presumed innocent until guilty, hence

$$
p(X=\text { guilty })=1 / 20
$$

- Eyewitness has equal confusion probability

$$
\begin{aligned}
p(Y=\text { eyewitness identifies } \mid X=\text { guilty }) & =0.9 \\
\text { and } p(Y=\text { eyewitness identifies } \mid X=\text { not guilty }) & =0.1
\end{aligned}
$$

Bayes Rule

$$
\operatorname{Pr}(X \mid Y)=\frac{0.9 \cdot 0.05}{0.9 \cdot 0.05+0.1 \cdot 0.95}=0.3213=32 \%
$$

But most judges would convict him anyway ...

Improving Inference

Follow up on the AIDS test:
The doctor performs a, conditionally independent test which has the following properties:

- The second test reports positive for 90% infections.
- The AIDS test reports positive for 5% healthy people.
$\operatorname{Pr}(\mathbf{T} 1, \mathbf{T} 2 \mid$ Health $)=\operatorname{Pr}(\mathbf{T} 1 \mid$ Health $) \operatorname{Pr}(\mathbf{T} 2 \mid$ Health $)$.
A bit more algebra reveals (assuming that both tests are independent): $\frac{0.01 \cdot 0.05 \cdot 0.999}{0.01 \cdot 0.05 \cdot 0.099+1 \cdot 0.9 \cdot 0.001}=0.357$.

Conclusion:

Adding extra observations can improve the confidence of the test considerably.

Different Contexts

Hypothesis Testing:

- Is solution A or B better to solve the problem (e.g. in manufacturing)?
- Is a coin tainted?
- Which parameter setting should we use?

Sensor Fusion:

- Evidence from sensors A and B (cf. AIDS test 1 and 2).
- We have different types of data.

More Data:

- We obtain two sets of data - we get more confident
- Each observation can be seen as an additional test

Estimating Probabilities from Data

Rolling a dice:

Roll the dice many times and count how many times each side comes up. Then assign empirical probability estimates according to the frequency of occurrence.
Maximum Likelihood for Multinomial Distribution:
We match the empirical probabilities via

$$
\underset{\mathrm{emp}}{\operatorname{Pr}}(i)=\frac{\# \text { occurrences of } i}{\# \text { trials }}
$$

In plain English this means that we take the number of occurrences of a particular event (say 7 times head) and divide this by the total number of trials (say 10 times). This yields 0.7 .

Maximum Likelihood Proof

Goal
We want to estimate the parameter $\pi \in \mathbb{R}^{n}$ such that

$$
\operatorname{Pr}(X \mid \pi)=\prod_{j=1}^{m} \operatorname{Pr}\left(X_{j} \mid \pi\right)=\prod_{i=1}^{n} \pi_{i}^{\# i}
$$

is maximized while π is a probability (reparameterize $\pi_{i}=e^{\theta_{i}}$.

Constrained Optimization Problem

$$
\text { minimize } \sum_{i=1}^{n}-\# i \cdot \theta_{i} \text { subject to } \sum_{i=1}^{n} e^{\theta_{i}}=1
$$

Lagrange Function

$$
L(\pi, \gamma)=\sum_{i=1}^{n}-\# i \cdot \theta_{i}+\gamma\left(1-\sum_{i=1}^{n} e^{\theta_{i}}\right)
$$

Maximum Likelihood Proof

First Order Optimality Conditions

$$
\begin{aligned}
L(\pi, \alpha, \gamma) & =\sum_{i=1}^{n}-\# i \cdot \theta_{i}+\gamma\left(\sum_{i=1}^{n} e^{\theta_{i}}-1\right) \\
\partial_{\theta_{i}} & =-\# i+\gamma e^{\theta_{i}} \text { vanishes } \\
\Longrightarrow \pi_{i} & =e^{\theta_{i}}=\frac{\# i}{\gamma}
\end{aligned}
$$

Finally, the sum constraint is satisfied if $\gamma=\sum_{i} \# i$.

Practical Example

Properties of MLE

Hoeffding's Bound

The probability estimates converge exponentially fast

$$
\operatorname{Pr}\left\{\left|\pi_{i}-p_{i}\right|>\epsilon\right\} \leq 2 \exp \left(-2 m \epsilon^{2}\right)
$$

Problem

- For small ϵ this can still take a very long time. In particular, for a fixed confidence level δ we have

$$
\delta=2 \exp \left(-2 m \epsilon^{2}\right) \Longrightarrow \epsilon=\sqrt{\frac{-\log \delta+\log 2}{2 m}}
$$

- The above bound holds only for single π_{i}, not uniformly over all i.
Improved Approach
If we know something about π_{i}, we should use this extra information: use priors.

Summary

Data
What to do with data
Unsupervised learning (clustering, embedding, etc.), Classification, sequence annotation, Regression, ... Statistics and probability theory

- Probability of an event
- Dependence, independence, conditional probability
- Bayes rule, Hypothesis testing
- Maximum Likelihood Estimation
- Confidence bounds

An Introduction to Machine Learning with Kernels Lecture 2

Alexander J. Smola Alex.Smola@nicta.com.au

Statistical Machine Learning Program National ICT Australia, Canberra

Day 1

Machine learning and probability theory

Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference
Density estimation and Parzen windows
Kernels and density estimation, Silverman's rule, Watson Nadaraya estimator, crossvalidation
Perceptron and kernels
Hebb's rule, perceptron algorithm, convergence, feature maps, kernel trick, examples
Support Vector classification
Geometrical view, dual problem, convex optimization, kernels and SVM

L2 Density estimation

Density estimation

- empirical frequency, bin counting
- priors and Laplace rule

Parzen windows

- Smoothing out the estimates
- Examples

Adjusting parameters

- Cross validation
- Silverman's rule

Classification and regression with Parzen windows

- Watson-Nadaraya estimator
- Nearest neighbor classifier

Tossing a dice (again)

Priors to the Rescue

Big Problem

Only sampling many times gets the parameters right.
Rule of Thumb
We need at least 10-20 times as many observations.
Priors
Often we know what we should expect. Using a conjugate prior helps. There insert fake additional data which we assume that it comes from the prior.
Practical Example
If we assume that the dice is even, then we can add m_{0} observations to each event $1 \leq i \leq 6$. This yields

$$
\pi_{i}=\frac{\# \text { occurrences of } i+u_{i}-1}{\# \text { trials }+\sum_{j}\left(u_{j}-1\right)}
$$

For $m_{0}=1$ this is the famous Laplace Rule.

Example: Dice

20 tosses of a dice

Outcome	1	2	3	4	5	6
Counts	3	6	2	1	4	4
MLE	0.15	0.30	0.10	0.05	0.20	0.20
MAP $\left(m_{0}=6\right)$	0.25	0.27	0.12	0.08	0.19	0.19
MAP $\left(m_{0}=100\right)$	0.16	0.19	0.16	0.15	0.17	0.17

Consequences

- Stronger prior brings the estimate closer to uniform distribution.
- More robust against outliers
- But: Need more data to detect deviations from prior

Correct dice

Tainted dice

Density Estimation

Data

Continuous valued random variables.
Naive Solution
Apply the bin-counting strategy to the continuum. That is, we discretize the domain into bins.

Problems

- We need lots of data to fill the bins
- In more than one dimension the number of bins grows exponentially:
- Assume 10 bins per dimension, so we have 10 in \mathbb{R}^{1}
- 100 bins in \mathbb{R}^{2}
- 10^{10} bins (10 billion bins) in $\mathbb{R}^{10} \ldots$

Mixture Density

Sampling from $p(x)$

Bin counting

Parzen Windows

Naive approach

Use the empirical density

$$
p_{\mathrm{emp}}(x)=\frac{1}{m} \sum_{i=1}^{m} \delta\left(x, x_{i}\right)
$$

which has a delta peak for every observation.

Problem

What happens when we see slightly different data?
Idea
Smear out $p_{\text {emp }}$ by convolving it with a kernel $k\left(x, x^{\prime}\right)$. Here $k\left(x, x^{\prime}\right)$ satisfies

$$
\int_{X} k\left(x, x^{\prime}\right) d x^{\prime}=1 \text { for all } x \in X
$$

Parzen Windows

Estimation Formula

Smooth out $p_{\text {emp }}$ by convolving it with a kernel $k\left(x, x^{\prime}\right)$.

$$
p(x)=\frac{1}{m} \sum_{i=1}^{m} k\left(x_{i}, x\right)
$$

Adjusting the kernel width

- Range of data should be adjustable
- Use kernel function $k\left(x, x^{\prime}\right)$ which is a proper kernel.
- Scale kernel by radius r. This yields

$$
k_{r}\left(x, x^{\prime}\right):=r^{n} k\left(r x, r x^{\prime}\right)
$$

Here n is the dimensionality of x.

Discrete Density Estimate

Smoothing Function

Density Estimate

Examples of Kernels

Gaussian Kernel

$$
k\left(x, x^{\prime}\right)=\left(2 \pi \sigma^{2}\right)^{\frac{n}{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right)
$$

Laplacian Kernel

$$
k\left(x, x^{\prime}\right)=\lambda^{n} 2^{-n} \exp \left(-\lambda\left\|x-x^{\prime}\right\|_{1}\right)
$$

Indicator Kernel

$$
k\left(x, x^{\prime}\right)=1_{[-0.5,0.5]}\left(x-x^{\prime}\right)
$$

Important Issue

Width of the kernel is usually much more important than type.

Gaussian Kernel

Laplacian Kernel

Indicator Kernel

Gaussian Kernel

Laplacian Kernel

Laplacian Kernel with width $\lambda=1$

Laplacian Kernel

Laplacian Kernel with width $\lambda=10$

Selecting the Kernel Width

Goal

We need a method for adjusting the kernel width.
Problem
The likelihood keeps on increasing as we narrow the kernels.
Reason
The likelihood estimate we see is distorted (we are being overly optimistic through optimizing the parameters).
Possible Solution
Check the performance of the density estimate on an unseen part of the data. This can be done e.g. by

- Leave-one-out crossvalidation
- Ten-fold crossvalidation

Expected log-Iikelihood

What we really want

- A parameter such that in expectation the likelihood of the data is maximized

$$
\begin{aligned}
p_{r}(X) & =\prod_{i=1}^{m} p_{r}\left(x_{i}\right) \\
\frac{1}{m} \log p_{r}(X) & =\frac{1}{m} \sum_{i=1}^{m} \log p_{r}\left(x_{i}\right) .
\end{aligned}
$$

- However, if we optimize r for the seen data, we will always overestimate the likelihood.

Solution: Crossvalidation

- Test on unseen data
- Remove a fraction of data from X, say X^{\prime}, estimate using $X \backslash X^{\prime}$ and test on X^{\prime}.

Crossvalidation Details

Basic Idea

Compute $p\left(X^{\prime} \mid \theta\left(X \backslash X^{\prime}\right)\right)$ for various subsets of X and average over the corresponding log-likelihoods.
Practical Implementation
Generate subsets $X_{i} \subset X$ and compute the loglikelihood estimate

$$
\frac{1}{n} \sum_{i}^{n} \frac{1}{\left|X_{i}\right|} \log p\left(X_{i} \mid \theta\left(X \mid \backslash X_{i}\right)\right)
$$

Pick the parameter which maximizes the above estimate. Special Case: Leave-one-out Crossvalidation

$$
p_{X \backslash x_{i}}\left(x_{i}\right)=\frac{m}{m-1} p_{X}\left(x_{i}\right)-\frac{1}{m-1} k\left(x_{i}, x_{i}\right)
$$

Cross Validation

Best Fit ($\lambda=1.9$)

Laplacian Kernel with width optimal λ

Application: Novelty Detection

Goal
Find the least likely observations x_{i} from a dataset X. Alternatively, identify low-density regions, given X.
Idea
Perform density estimate $p_{X}(x)$ and declare all x_{i} with $p_{X}\left(x_{i}\right)<p_{0}$ as novel.
Algorithm
Simply compute $f\left(x_{i}\right)=\sum_{j} k\left(x_{i}, x_{j}\right)$ for all i and sort according to their magnitude.

Applications

Network Intrusion Detection

Detect whether someone is trying to hack the network, downloading tons of MP3s, or doing anything else unusual on the network.
Jet Engine Failure Detection
You can't destroy jet engines just to see how they fail.
Database Cleaning
We want to find out whether someone stored bogus information in a database (typos, etc.), mislabelled digits, ugly digits, bad photographs in an electronic album.
Fraud Detection
Credit Cards, Telephone Bills, Medical Records
Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked), home alarm (furniture, temperature, windows, etc.)

Order Statistic of Densities

$$
\begin{aligned}
& 34861136 \\
& 00471442 \\
& 60433741 \\
& 35002100 \\
& 17920600
\end{aligned}
$$

Outliers

Silverman's Automatic Adjustment

Problem

One 'width fits all' does not work well whenever we have regions of high and of low density.
Idea
Adjust width such that neighbors of a point are included in the kernel at a point. More specifically, adjust range h_{i} to yield

$$
h_{i}=\frac{r}{k} \sum_{x_{j} \in \mathrm{NN}\left(x_{i}, k\right)}\left\|x_{j}-x_{i}\right\|
$$

where $\mathrm{NN}\left(x_{i}, k\right)$ is the set of k nearest neighbors of x_{i} and r is typically chosen to be 0.5 .
Result
State of the art density estimator, regression estimator and classifier.

Sampling from $p(x)$

Uneven Scales

Neighborhood Scales

Adjusted Width

Watson-Nadaraya Estimator

Goal
Given pairs of observations $\left(x_{i}, y_{i}\right)$ with $y_{i} \in\{ \pm 1\}$ find estimator for conditional probability $\operatorname{Pr}(y \mid x)$.
Idea
Use definition $p(x, y)=p(y \mid x) p(x)$ and estimate both $p(x)$ and $p(x, y)$ using Parzen windows. Using Bayes rule this yields

$$
\operatorname{Pr}(y=1 \mid x)=\frac{P(y=1, x)}{P(x)}=\frac{m^{-1} \sum_{y_{i}=1} k\left(x_{i}, x\right)}{m^{-1} \sum_{i} k\left(x_{i}, x\right)}
$$

Bayes optimal decision
We want to classify $y=1$ for $\operatorname{Pr}(y=1 \mid x)>0.5$. This is equivalent to checking the sign of

$$
\operatorname{Pr}(y=1 \mid x)-\operatorname{Pr}(y=-1 \mid x)=\sum_{i} y_{i} k\left(x_{i}, x\right)
$$

Training Data

Watson Nadaraya Classifier

Difference in Signs

Watson Nadaraya Regression

Decision Boundary
Picking $y=1$ or $y=-1$ depends on the sign of

$$
\operatorname{Pr}(y=1 \mid x)-\operatorname{Pr}(y=-1 \mid x)=\frac{\sum_{i} y_{i} k\left(x_{i}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}
$$

Extension to Regression

- Use the same equation for regression. This means that

$$
f(x)=\frac{\sum_{i} y_{i} k\left(x_{i}, x\right)}{\sum_{i} k\left(x_{i}, x\right)}
$$

where now $y_{i} \in \mathbb{R}$.

- We get a locally weighted version of the data

Regression Problem

Watson Nadaraya Regression

Nearest Neighbor Classifier

Extension of Silverman's trick

Use the density estimator for classification and regression.
Simplification
Rather than computing a weighted combination of labels to estimate the label, use an unweighted combination over the nearest neighbors.
Result
k-nearest neighbor classifier. Often used as baseline to compare a new algorithm.

Nice Properties

Given enough data, k-nearest neighbors converges to the best estimator possible (it is consistent).

Practical Implementation

Nearest Neighbor Rule

- Need distance measure between data
- Given data x, find nearest point x_{i}
- Classify according to the label y_{i}
k-Nearest Neighbor Rule
- Find k nearest neighbors of x
- Decide class of x according to majority of labels y_{i}.
- Hence prefer odd k.

Neighborhood Search Algorithms

- Brute force search (OK if data not too large)
- Random projection tricks (fast but difficult)
- Neighborhood trees (very fast, implementation tricky)

Baseline
Use k-NN as reference before fancy algorithms.

Summary

Density estimation

- empirical frequency, bin counting
- priors and Laplace rule

Parzen windows

- Smoothing out the estimates
- Examples

Adjusting parameters

- Cross validation
- Silverman's rule

Classification and regression with Parzen windows

- Watson-Nadaraya estimator
- Nearest neighbor classifier

An Introduction to Machine Learning with Kernels Lecture 3

Alexander J. Smola Alex.Smola@nicta.com.au

Statistical Machine Learning Program National ICT Australia, Canberra

Day 1

Machine learning and probability theory

Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference
Density estimation and Parzen windows
Kernels and density estimation, Silverman's rule, Watson Nadaraya estimator, crossvalidation
Perceptron and kernels
Hebb's rule, perceptron algorithm, convergence, feature maps, kernel trick, examples
Support Vector classification
Geometrical view, dual problem, convex optimization, kernels and SVM

L3 Perceptron and Kernels

Hebb's rule

- positive feedback
- perceptron convergence rule

Hyperplanes

- Linear separability
- Inseparable sets

Features

- Explicit feature construction
- Implicit features via kernels

Kernels

- Examples
- Kernel perceptron

Biology and Learning

Basic Idea

- Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves the fitness of the system.
- Example: hitting a sabertooth tiger over the head should be rewarded ...
- Correlated events should be combined.
- Example: Pavlov's salivating dog.

Training Mechanisms

- Behavioral modification of individuals (learning) successful behavior is rewarded (e.g. food).
- Hard-coded behavior in the genes (instinct) - the wrongly coded animal dies.

Soma

Cell body. Here the signals are combined ("CPU").
Dendrite
Combines the inputs from several other nerve cells ("input bus").

Synapse

Interface between two neurons ("connector").

Axon

This may be up to 1 m long and will transport the activation signal to nerve cells at different locations ("output cable").

Perceptron

Perceptrons

Weighted combination

- The output of the neuron is a linear combination of the inputs (from the other neurons via their axons) rescaled by the synaptic weights.
- Often the output does not directly correspond to the activation level but is a monotonic function thereof.
Decision Function
- At the end the results are combined into

$$
f(x)=\sigma\left(\sum_{i=1}^{n} w_{i} x_{i}+b\right)
$$

Separating Half Spaces

Linear Functions

An abstract model is to assume that

$$
f(x)=\langle w, x\rangle+b
$$

where $w, x \in \mathbb{R}^{m}$ and $b \in \mathbb{R}$.

Biological Interpretation

The weights w_{i} correspond to the synaptic weights (activating or inhibiting), the multiplication corresponds to the processing of inputs via the synapses, and the summation is the combination of signals in the cell body (soma). Applications

Spam filtering (e-mail), echo cancellation (old analog overseas cables)
Learning
Weights are "plastic" - adapted via the training data.

Linear Separation

Perceptron Algorithm

argument: $X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$ (data)

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $(w, b)=\operatorname{Perceptron}(X, Y, \eta)$
initialize $w, b=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data if $y_{i}\left(w \cdot x_{i}+b\right) \leq 0$ then

$$
\begin{aligned}
& w^{\prime}=w+y_{i} x_{i} \\
& b^{\prime}=b+y_{i}
\end{aligned}
$$

until $y_{i}\left(w \cdot x_{i}+b\right)>0$ for all i end

Interpretation

Algorithm

- Nothing happens if we classify $\left(x_{i}, y_{i}\right)$ correctly
- If we see incorrectly classified observation we update (w, b) by $y_{i}\left(x_{i}, 1\right)$.
- Positive reinforcement of observations.

Solution

- Weight vector is linear combination of observations x_{i} :

$$
w \longleftarrow w+y_{i} x_{i}
$$

- Classification can be written in terms of dot products:

$$
w \cdot x+b=\sum_{j \in E} y_{j} x_{j} \cdot x+b
$$

Theoretical Analysis

Incremental Algorithm

Already while the perceptron is learning, we can use it.
Convergence Theorem (Rosenblatt and Novikoff)
Suppose that there exists a $\rho>0$, a weight vector w^{*} satisfying $\left\|w^{*}\right\|=1$, and a threshold b^{*} such that

$$
y_{i}\left(\left\langle w^{*}, x_{i}\right\rangle+b^{*}\right) \geq \rho \text { for all } 1 \leq i \leq m .
$$

Then the hypothesis maintained by the perceptron algorithm converges to a linear separator after no more than

$$
\frac{\left(b^{* 2}+1\right)\left(R^{2}+1\right)}{\rho^{2}}
$$

updates, where $R=\max _{i}\left\|x_{i}\right\|$.

Solutions of the Perceptron

Proof, Part I

Starting Point
 We start from $w_{1}=0$ and $b_{1}=0$.

Step 1: Bound on the increase of alignment

Denote by w_{i} the value of w at step i (analogously b_{i}). Alignment: $\left\langle\left(w_{i}, b_{i}\right),\left(w^{*}, b^{*}\right)\right\rangle$
For error in observation $\left(x_{i}, y_{i}\right)$ we get

$$
\begin{aligned}
& \left\langle\left(w_{j+1}, b_{j+1}\right) \cdot\left(w^{*}, b^{*}\right)\right\rangle \\
& =\left\langle\left[\left(w_{j}, b_{j}\right)+y_{i}\left(x_{i}, 1\right)\right],\left(w^{*}, b^{*}\right)\right\rangle \\
& =\left\langle\left(w_{j}, b_{j}\right),\left(w^{*}, b^{*}\right)\right\rangle+\eta y_{i}\left\langle\left(x_{i}, 1\right) \cdot\left(w^{*}, b^{*}\right)\right\rangle \\
& \geq\left\langle\left(w_{j}, b_{j}\right),\left(w^{*}, b^{*}\right)\right\rangle+\eta \rho \\
& \geq j \eta \rho .
\end{aligned}
$$

Alignment increases with number of errors.

Proof, Part II

Step 2: Cauchy-Schwartz for the Dot Product

$$
\begin{aligned}
\left\langle\left(w_{j+1}, b_{j+1}\right) \cdot\left(w^{*}, b^{*}\right)\right\rangle & \leq\left\|\left(w_{j+1}, b_{j+1}\right)\right\|\left\|\left(w^{*}, b^{*}\right)\right\| \\
& =\sqrt{1+\left(b^{*}\right)^{2}}\left\|\left(w_{j+1}, b_{j+1}\right)\right\|
\end{aligned}
$$

Step 3: Upper Bound on $\left\|\left(w_{j}, b_{j}\right)\right\|$
If we make a mistake we have

$$
\begin{aligned}
\left\|\left(w_{j+1}, b_{j+1}\right)\right\|^{2} & =\left\|\left(w_{j}, b_{j}\right)+y_{i}\left(x_{i}, 1\right)\right\|^{2} \\
& =\left\|\left(w_{j}, b_{j}\right)\right\|^{2}+2 y_{i}\left(\left(x_{i}, 1\right),\left(w_{j}, b_{j}\right)\right\rangle+\left\|\left(x_{i}, 1\right)\right\|^{2} \\
& \leq\left\|\left(w_{j}, b_{j}\right)\right\|^{2}+\left\|\left(x_{i}, 1\right)\right\|^{2} \\
& \leq j\left(R^{2}+1\right) .
\end{aligned}
$$

Step 4: Combination of first three steps

$$
j \eta \rho \leq \sqrt{1+\left(b^{*}\right)^{2}}\left\|\left(w_{j+1}, b_{j+1}\right)\right\| \leq \sqrt{j\left(R^{2}+1\right)\left(\left(b^{*}\right)^{2}+1\right)}
$$

Solving for j proves the theorem.

What does it mean?

Learning Algorithm

We perform an update only if we make a mistake.
Convergence Bound

- Bounds the maximum number of mistakes in total. We will make at most $\left(b^{* 2}+1\right)\left(R^{1}+1\right) / \rho^{2}$ mistakes in the case where a "correct" solution w^{*}, b^{*} exists.
- This also bounds the expected error (if we know ρ, R, and $\left.\left|b^{*}\right|\right)$.
Dimension Independent
Bound does not depend on the dimensionality of \mathcal{X}. Sample Expansion

We obtain x as a linear combination of x_{i}.

Realizable and Non-realizable Concepts

Realizable Concept

 Here some w^{*}, b^{*} exists such that y is generated by $y=\operatorname{sgn}\left(\left\langle w^{*}, x\right\rangle+b\right)$. In general realizable means that the exact functional dependency is included in the class of admissible hypotheses.Unrealizable Concept
In this case, the exact concept does not exist or it is not included in the function class.

The XOR Problem

Training data

Perceptron algorithm (i=7)

Perceptron algorithm (i=16)

Perceptron algorithm (i=2)

Perceptron algorithm (i=4)

Perceptron algorithm (i=16)

Perceptron algorithm (i=2)

Perceptron algorithm (i=16)

Perceptron algorithm (i=12)

Perceptron algorithm (i=16)

Perceptron algorithm (i=20)

Stochastic Gradient Descent, 1

Linear Function

$$
f(x)=\langle w, x\rangle+b
$$

Objective Function

$$
\begin{aligned}
R[f] & :=\frac{1}{m} \sum_{i=1}^{m} \max \left(0,-y_{i} f\left(x_{i}\right)\right) \\
& =\sum_{i=1}^{m} \max \left(0,-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
\end{aligned}
$$

Stochastic Gradient

We use each term in the sum as a stochastic approximation of the overall objective function:

$$
\begin{gathered}
w \longleftarrow w-\eta \partial_{w}\left(0,-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right) \\
b \longleftarrow b-\eta \partial_{b}\left(0,-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
\end{gathered}
$$

Stochastic Gradient Descent, 2

Details

$$
\begin{aligned}
\partial_{w} \max \left(0,-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right) & = \begin{cases}-y_{i} x_{i} & \text { for } f\left(x_{i}\right)<0 \\
0 & \text { otherwise }\end{cases} \\
\partial_{b} \max \left(0,-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right) & = \begin{cases}-y_{i} & \text { for } f\left(x_{i}\right)<0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Overall Strategy

- Have complicated function consisting of lots of terms
- Want to minimize this monster
- Solve it performing descent into one direction at a time
- Randomly pick directions and converge
- Often need to adjust learning rate η

Nonlinearity via Preprocessing

Problem

Linear functions are often too simple to provide good estimators.
Idea

- Map to a higher dimensional feature space via $\Phi: x \rightarrow$ $\Phi(x)$ and solve the problem there.
- Replace every $\left\langle x, x^{\prime}\right\rangle$ by $\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$ in the perceptron algorithm.
Consequence
- We have nonlinear classifiers.
- Solution lies in the choice of features $\Phi(x)$.

Nonlinearity via Preprocessing

Features
Quadratic features correspond to circles, hyperbolas and ellipsoids as separating surfaces.

Constructing Features

Idea
Construct features manually. E.g. for OCR we could use

	1	2	3	4	5	6	7	8	9	0
Loops	0	0	0	1	0	1	0	2	1	1
3 Joints	0	0	0	0	0	1	0	0	1	0
4 Joints	0	0	0	1	0	0	0	1	0	0
Angles	0	1	1	1	1	0	1	0	0	0
Ink	1	2	2	2	2	2	1	3	2	2

More Examples

Two Interlocking Spirals

If we transform the data $\left(x_{1}, x_{2}\right)$ into a radial part ($r=$ $\sqrt{x_{1}^{2}+x_{2}^{2}}$) and an angular part ($x_{1}=r \cos \phi, x_{1}=r \sin \phi$), the problem becomes much easier to solve (we only have to distinguish different stripes). Japanese Character Recognition

Break down the images into strokes and recognize it from the latter (there's a predefined order of them). Medical Diagnosis

Include physician's comments, knowledge about unhealthy combinations, features in EEG, ...
Suitable Rescaling
If we observe, say the weight and the height of a person, rescale to zero mean and unit variance.

Perceptron on Features

argument: $X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$ (data)

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $(w, b)=\operatorname{Perceptron}(X, Y, \eta)$
initialize $w, b=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data

$$
\text { if } \begin{gathered}
y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right) \leq 0 \text { then } \\
w^{\prime}=w+y_{i} \Phi\left(x_{i}\right) \\
b^{\prime}=b+y_{i}
\end{gathered}
$$

until $y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right)>0$ for all i
end

Important detail

$$
w=\sum_{j} y_{j} \Phi\left(x_{j}\right) \text { and hence } f(x)=\sum_{j} y_{j}\left(\Phi\left(x_{j}\right) \cdot \Phi(x)\right)+b
$$

Problems with Constructing Features

Problems

- Need to be an expert in the domain (e.g. Chinese characters).
- Features may not be robust (e.g. postman drops letter in dirt).
- Can be expensive to compute.

Solution

- Use shotgun approach.
- Compute many features and hope a good one is among them.
- Do this efficiently.

Polynomial Features

Quadratic Features in \mathbb{R}^{2}

$$
\Phi(x):=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

Dot Product

$$
\begin{aligned}
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle & =\left\langle\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right),\left(x_{1}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}, x_{2}^{\prime 2}\right)\right\rangle \\
& =\left\langle x, x^{\prime}\right\rangle^{2} .
\end{aligned}
$$

Insight
Trick works for any polynomials of order d via $\left\langle x, x^{\prime}\right\rangle^{d}$.

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 38

Kernels

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5005 numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works ...

Definition

A kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric function in its arguments for which the following property holds
$k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$ for some feature map Φ.
If $k\left(x, x^{\prime}\right)$ is much cheaper to compute than $\Phi(x) \ldots$

Polynomial Kernels in \mathbb{R}^{n}

Idea

- We want to extend $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle^{2}$ to

$$
k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d} \text { where } c>0 \text { and } d \in \mathbb{N} \text {. }
$$

- Prove that such a kernel corresponds to a dot product.

Proof strategy
Simple and straightforward: compute the explicit sum given by the kernel, i.e.

$$
k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d}=\sum_{i=0}^{m}\binom{d}{i}\left(\left\langle x, x^{\prime}\right\rangle\right)^{i} c^{d-i}
$$

Individual terms $\left(\left\langle x, x^{\prime}\right\rangle\right)^{i}$ are dot products for some $\Phi_{i}(x)$.

Kernel Perceptron

argument: $X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$ (data)

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $f=\operatorname{Perceptron}(X, Y, \eta)$
initialize $f=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data if $y_{i} f\left(x_{i}\right) \leq 0$ then

$$
f(\cdot) \leftarrow f(\cdot)+y_{i} k\left(x_{i}, \cdot\right)+y_{i}
$$

until $y_{i} f\left(x_{i}\right)>0$ for all i
end

Important detail

$w=\sum_{j} y_{j} \Phi\left(x_{j}\right)$ and hence $f(x)=\sum_{j} y_{j} k\left(x_{j}, x\right)+b$.

Are all $k\left(x, x^{\prime}\right)$ good Kernels?

Computability

We have to be able to compute $k\left(x, x^{\prime}\right)$ efficiently (much cheaper than dot products themselves).
"Nice and Useful" Functions
The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Symmetry

Obviously $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$ due to the symmetry of the dot product $\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=\left\langle\Phi\left(x^{\prime}\right), \Phi(x)\right\rangle$.
Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?

Mercer's Theorem

The Theorem

For any symmetric function $k: X \times X \rightarrow \mathbb{R}$ which is square integrable in $X \times X$ and which satisfies

$$
\int_{x_{\times} \times} k\left(x, x^{\prime}\right) f(x) f\left(x^{\prime}\right) d x d x^{\prime} \geq 0 \text { for all } f \in L_{2}(X)
$$

there exist $\phi_{i}: X \rightarrow \mathbb{R}$ and numbers $\lambda_{i} \geq 0$ where

$$
k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right) \text { for all } x, x^{\prime} \in X .
$$

Interpretation

Double integral is the continuous version of a vector-matrix-vector multiplication. For positive semidefinite matrices we have

$$
\sum_{i} \sum_{j} k\left(x_{i}, x_{j}\right) \alpha_{i} \alpha_{j} \geq 0
$$

Properties of the Kernel

Distance in Feature Space

Distance between points in feature space via

$$
\begin{aligned}
d\left(x, x^{\prime}\right)^{2} & :=\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|^{2} \\
& =\langle\Phi(x), \Phi(x)\rangle-2\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle+\left\langle\Phi\left(x^{\prime}\right), \Phi\left(x^{\prime}\right)\right\rangle \\
& =k(x, x)+k\left(x^{\prime}, x^{\prime}\right)-2 k(x, x)
\end{aligned}
$$

Kernel Matrix

To compare observations we compute dot products, so we study the matrix K given by

$$
K_{i j}=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle=k\left(x_{i}, x_{j}\right)
$$

where x_{i} are the training patterns.

Similarity Measure

The entries $K_{i j}$ tell us the overlap between $\Phi\left(x_{i}\right)$ and $\Phi\left(x_{j}\right)$, so $k\left(x_{i}, x_{j}\right)$ is a similarity measure.

Properties of the Kernel Matrix

K is Positive Semidefinite

Claim: $\alpha^{\top} K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^{m}$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$
\sum_{i, j}^{m} \alpha_{i} \alpha_{j} K_{i j}=\sum_{i, j}^{m} \alpha_{i} \alpha_{j}\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle
$$

$$
=\left\langle\sum_{i}^{m} \alpha_{i} \Phi\left(x_{i}\right), \sum_{j}^{m} \alpha_{j} \Phi\left(x_{j}\right)\right\rangle=\left\|\sum_{i=1}^{m} \alpha_{i} \Phi\left(x_{i}\right)\right\|^{2}
$$

Kernel Expansion

If w is given by a linear combination of $\Phi\left(x_{i}\right)$ we get

$$
\langle w, \Phi(x)\rangle=\left\langle\sum_{i=1}^{m} \alpha_{i} \Phi\left(x_{i}\right), \Phi(x)\right\rangle=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right) .
$$

A Counterexample

A Candidate for a Kernel

$$
k\left(x, x^{\prime}\right)= \begin{cases}1 & \text { if }\left\|x-x^{\prime}\right\| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

This is symmetric and gives us some information about the proximity of points, yet it is not a proper kernel ...
Kernel Matrix
We use three points, $x_{1}=1, x_{2}=2, x_{3}=3$ and compute the resulting "kernelmatrix" K. This yields
$K=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ and eigenvalues $(\sqrt{2}-1)^{-1}, 1$ and $(1-\sqrt{2})$.
as eigensystem. Hence k is not a kernel.

Some Good Kernels

Examples of kernels $k\left(x, x^{\prime}\right)$
Linear
$\left\langle x, x^{\prime}\right\rangle$
Laplacian RBF

$$
\exp \left(-\lambda\left\|x-x^{\prime}\right\|\right)
$$

Gaussian RBF
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|^{2}\right)$
Polynomial
$\left.\left(\left\langle x, x^{\prime}\right\rangle+c\right\rangle\right)^{d}, c \geq 0, d \in \mathbb{N}$
B-Spline
Cond. Expectation
$B_{2 n+1}\left(x-x^{\prime}\right)$
$\mathbf{E}_{c}\left[p(x \mid c) p\left(x^{\prime} \mid c\right)\right]$

Simple trick for checking Mercer's condition
Compute the Fourier transform of the kernel and check that it is nonnegative.

Linear Kernel

Laplacian Kernel

Gaussian Kernel

Polynomial (Order 3)

B_{3}-Spline Kernel

Summary

Hebb's rule

- positive feedback
- perceptron convergence rule, kernel perceptron Features
- Explicit feature construction
- Implicit features via kernels

Kernels

- Examples
- Mercer's theorem

An Introduction to Machine Learning with Kernels Lecture 4

Alexander J. Smola Alex.Smola@nicta.com.au

Statistical Machine Learning Program National ICT Australia, Canberra

Day 1

Machine learning and probability theory

Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference
Density estimation and Parzen windows
Kernels and density estimation, Silverman's rule, Watson Nadaraya estimator, crossvalidation
Perceptron and kernels
Hebb's rule, perceptron algorithm, convergence, feature maps, kernel trick, examples
Support Vector classification
Geometrical view, dual problem, convex optimization, kernels and SVM

L4 Support Vector Classification

Support Vector Machine

- Problem definition
- Geometrical picture
- Optimization problem

Optimization Problem

- Hard margin
- Convexity
- Dual problem
- Soft margin problem

Classification

Data

Pairs of observations $\left(x_{i}, y_{i}\right)$ generated from some distribution $\mathrm{P}(x, y)$, e.g., (blood status, cancer), (credit transaction, fraud), (profile of jet engine, defect)

Task

- Estimate y given x at a new location.
- Modification: find a function $f(x)$ that does the task.

So Many Solutions

One to rule them all ...

Optimal Separating Hyperplane

Optimization Problem

Margin to Norm

- Separation of sets is given by $\frac{2}{\|w\|}$ so maximize that.
- Equivalently minimize $\|w\|$.
- Equivalently minimize $\|w\|^{2}$.

Constraints

- Separation with margin, i.e.

$$
\begin{array}{ll}
\left\langle w, x_{i}\right\rangle+b \geq 1 & \text { if } y_{i}=1 \\
\left\langle w, x_{i}\right\rangle+b \leq-1 & \text { if } y_{i}=-1
\end{array}
$$

- Equivalent constraint

$$
y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1
$$

Optimization Problem

Mathematical Programming Setting

Combining the above requirements we obtain
$\begin{array}{ll}\text { minimize } & \frac{1}{2}\|w\|^{2} \\ \text { subject to } & y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)-1 \geq 0 \text { for all } 1 \leq i \leq m\end{array}$
Properties

- Problem is convex
- Hence it has unique minimum
- Efficient algorithms for solving it exist

Lagrange Function

Objective Function

We have $\frac{1}{2}\|w\|^{2}$.
Constraints

$$
c_{i}(w, b):=1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \leq 0
$$

Lagrange Function

$$
\begin{aligned}
L(w, b, \alpha) & =\text { PrimalObjective }+\sum_{i} \alpha_{i} c_{i} \\
& =\frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
\end{aligned}
$$

Saddle Point Condition

Partial derivatives of L with respect to w and b need to vanish.

Solving the Equations

Lagrange Function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)
$$

Saddlepoint condition

$$
\begin{aligned}
& \partial_{w} L(w, b, \alpha)=w-\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}=0 \Longleftrightarrow w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \\
& \partial_{b} L(w, b, \alpha)=-\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}=0 \Longleftrightarrow \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{aligned}
$$

To obtain the dual optimization problem we have to substitute the values of w and b into L. Note that the dual variables α_{i} have the constraint $\alpha_{i} \geq 0$.

Solving the Equations

Dual Optimization Problem

After substituting in terms for b, w the Lagrange function becomes

$$
-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i=1}^{m} \alpha_{i}
$$

$$
\text { subject to } \sum_{i=1}^{m} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \geq 0 \text { for all } 1 \leq i \leq m
$$

Practical Modification

Need to maximize dual objective function. Rewrite as

$$
\operatorname{minimize} \frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle-\sum_{i=1}^{m} \alpha_{i}
$$

subject to the above constraints.

Support Vector Expansion

Solution in $w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$

- w is given by a linear combination of training patterns x_{i}. Independent of the dimensionality of x.
- w depends on the Lagrange multipliers α_{i}.

Kuhn-Tucker-Conditions

- At optimal solution Constraint \cdot Lagrange Multiplier $=0$
- In our context this means

$$
\alpha_{i}\left(1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)=0 .
$$

Equivalently we have

$$
\alpha_{i} \neq 0 \Longleftrightarrow y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)=1
$$

Only points at the decision boundary can contribute to the solution.

Kernels

Nonlinearity via Feature Maps

Replace x_{i} by $\Phi\left(x_{i}\right)$ in the optimization problem.

Equivalent optimization problem

$$
\begin{aligned}
& \text { minimize } \frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)-\sum_{i=1}^{m} \alpha_{i} \\
& \text { subject to } \sum_{i=1}^{m} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \geq 0 \text { for all } 1 \leq i \leq m
\end{aligned}
$$

Decision Function
From $w=\sum_{i=1}^{m} \alpha_{i} y_{i} \Phi\left(x_{i}\right)$ we conclude

$$
f(x)=\langle w, \Phi(x)\rangle+b=\sum^{m} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b .
$$

Examples and Problems

Advantage

Works well when the data is noise free.
Problem
Already a single wrong observation can ruin everything - we require $y_{i} f\left(x_{i}\right) \geq 1$ for all i.

Idea

Limit the influence of individual observations by making the constraints less stringent (introduce slacks).

Optimization Problem (Soft Margin)

Recall: Hard Margin Problem
minimize $\quad \frac{1}{2}\|w\|^{2}$
subject to $y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)-1 \geq 0$

Softening the Constraints

minimize $\quad \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i}$
subject to $y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)-1+\xi_{i} \geq 0$ and $\xi_{i} \geq 0$

Linear SVM C = 1

Linear SVM C=2

Linear SVM C = 5

Linear SVM C=10

Linear SVM $C=20$

Linear SVM $C=50$

Linear SVM C = 100

Linear SVM C = 1

Linear SVM C=2

Linear SVM C = 5

Linear SVM C= 10

Linear SVM C=20

Linear SVM C = 50

Linear SVM C = 100

Linear SVM C = 1

Linear SVM C=2

Linear SVM C = 5

Linear SVM C=10

Linear SVM C = 20

Linear SVM C = 50

Linear SVM C = 100

Linear SVM C=1

Linear SVM C=2

Linear SVM C = 5

Linear SVM C=10

Linear SVM C=20

Linear SVM C=50

Linear SVM C = 100

Insights

Changing C

- For clean data C doesn't matter much.
- For noisy data, large C leads to narrow margin (SVM tries to do a good job at separating, even though it isn't possible)

Noisy data

- Clean data has few support vectors
- Noisy data leads to data in the margins
- More support vectors for noisy data

Lagrange Function and Constraints

Lagrange Function

We have m more constraints, namely those on the ξ_{i}, for which we will use η_{i} as Lagrange multipliers.

$$
L(w, b, \xi, \alpha, \eta)=\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} \xi_{i}+\sum_{i=1}^{m} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\left\langle w, x_{i}\right\rangle+i\right.\right.
$$

Saddle Point Conditions

$$
\begin{aligned}
\partial_{w} L(w, b, \xi, \alpha, \eta)=w-\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}=0 & \Longleftrightarrow w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} . \\
\partial_{b} L(w, b, \xi, \alpha, \eta)=\sum_{i=1}^{m}-\alpha_{i} y_{i}=0 & \Longleftrightarrow \sum_{i=1}^{m} \alpha_{i} y_{i}=0 . \\
C-\alpha_{i}-\eta_{i}=0 & \Longleftrightarrow \alpha_{i} \in[0, C]
\end{aligned}
$$

Dual Optimization Problem

Optimization Problem

$\operatorname{minimize} \frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)-\sum_{i=1}^{m} \alpha_{i}$
subject to $\sum_{i=1}^{m} \alpha_{i} y_{i}=0$ and $C \geq \alpha_{i} \geq 0$ for all $1 \leq i \leq m$

Interpretation

- Almost same optimization problem as before
- Constraint on weight of each α_{i} (bounds influence of pattern).
- Efficient solvers exist (more about that tomorrow).

SV Classification Machine

Gaussian RBF with $C=1$

Gaussian RBF with $C=2$

Gaussian RBF with $C=5$

Gaussian RBF with $C=10$

Gaussian RBF with $C=20$

Gaussian RBF with $C=50$

Gaussian RBF with $C=100$

Gaussian RBF with $C=1$

Gaussian RBF with $C=2$

Gaussian RBF with $C=5$

Gaussian RBF with $C=10$

Gaussian RBF with $C=20$

Gaussian RBF with $C=50$

Gaussian RBF with $C=100$

Gaussian RBF with $C=1$

Gaussian RBF with $C=2$

Gaussian RBF with $C=5$

Gaussian RBF with $C=10$

Gaussian RBF with $C=20$

Gaussian RBF with $C=50$

Gaussian RBF with $C=100$

Gaussian RBF with $C=1$

Gaussian RBF with $C=2$

Gaussian RBF with $C=5$

Gaussian RBF with $C=10$

Gaussian RBF with $C=20$

Gaussian RBF with $C=50$

Gaussian RBF with $C=100$

Insights

Changing C

- For clean data C doesn't matter much.
- For noisy data, large C leads to more complicated margin (SVM tries to do a good job at separating, even though it isn't possible)
- Overfitting for large C

Noisy data

- Clean data has few support vectors
- Noisy data leads to data in the margins
- More support vectors for noisy data

Gaussian RBF with $\sigma=1$

Gaussian RBF with $\sigma=2$

Gaussian RBF with $\sigma=5$

Gaussian RBF with $\sigma=10$

Gaussian RBF with $\sigma=1$

Gaussian RBF with $\sigma=2$

Gaussian RBF with $\sigma=5$

Gaussian RBF with $\sigma=10$

Gaussian RBF with $\sigma=1$

Gaussian RBF with $\sigma=2$

Gaussian RBF with $\sigma=5$

Gaussian RBF with $\sigma=10$

Gaussian RBF with $\sigma=1$

Gaussian RBF with $\sigma=2$

Gaussian RBF with $\sigma=5$

Gaussian RBF with $\sigma=10$

Insights

Changing σ

- For clean data σ doesn't matter much.
- For noisy data, small σ leads to more complicated margin (SVM tries to do a good job at separating, even though it isn't possible)
- Lots of overfitting for small σ

Noisy data

- Clean data has few support vectors
- Noisy data leads to data in the margins
- More support vectors for noisy data

Summary

Support Vector Machine

- Problem definition
- Geometrical picture
- Optimization problem

Optimization Problem

- Hard margin
- Convexity
- Dual problem
- Soft margin problem

Today's Summary

Machine learning and probability theory
Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference
Density estimation and Parzen windows
Kernels and density estimation, Silverman's rule, Watson Nadaraya estimator, crossvalidation
Perceptron and kernels
Hebb's rule, perceptron algorithm, convergence, feature maps, kernel trick, examples
Support Vector classification
Geometrical view, dual problem, convex optimization, kernels and SVM

