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Day 1

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 2

Machine learning and probability theory
Introduction to pattern recognition, classification, regres-
sion, novelty detection, probability theory, Bayes rule, in-
ference

Density estimation and Parzen windows
Kernels and density estimation, Silverman’s rule, Wat-
son Nadaraya estimator, crossvalidation

Perceptron and kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernel trick, examples

Support Vector classification
Geometrical view, dual problem, convex optimization,
kernels and SVM



Day 2
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Text analysis and bioinformatics
Text categorization, biological sequences, kernels on
strings, efficient computation, examples

Optimization
Sequential minimal optimization, convex subproblems,
convergence, SVMLight, SimpleSVM

Regression and novelty detection
SVM regression, regularized least mean squares, adap-
tive margin width, novel observations

Practical tricks
Crossvalidation, ν-trick, median trick, data scaling,
smoothness and kernels



L1 Introduction to Machine Learning
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Data
Texts, images, vectors, graphs

What to do with data
Unsupervised learning (clustering, embedding, etc.)
Classification, sequence annotation
Regression, autoregressive models, time series
Novelty detection

What is not machine learning
Artificial intelligence
Rule based inference

Statistics and probability theory
Probability of an event
Dependence, independence, conditional probability
Bayes rule, Hypothesis testing



Data
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Vectors
Collections of features (e.g. height, weight, blood
pressure, age, . . . )
Can map categorical variables into vectors (useful for
mixed objects)

Matrices
Images, Movies
Remote sensing and satellite data (multispectral)

Strings
Documents
Gene sequences

Structured Objects
XML documents
Graphs



Optical Character Recognition
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Reuters Database
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Faces
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More Faces
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Microarray Data
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Biological Sequences
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Graphs
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Missing Variables
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Incomplete Data
Measurement devices may fail (e.g. dead pixels on
camera)
Measuring things may be expensive (diagnosis for pa-
tients)
Data may be censored

How to fix it
Clever algorithms (not this course)
Simple mean imputation (substitute in the average
from other observations)
Works amazingly well (for starters) . . .



What to do with data
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Unsupervised Learning
Find clusters of the data
Find low-dimensional representation of the data (e.g.
unroll a swiss roll)
Find interesting directions in data
Interesting coordinates and correlations
Find novel observations / database cleaning

Supervised Learning
Classification (distinguish apples from oranges)
Speech recognition
Regression (tomorrow’s stock value)
Predict time series
Annotate strings



Clustering
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Linear Subspace
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Principal Components
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Classification
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Data
Pairs of observations (xi, yi) generated from some distri-
bution P(x, y), e.g., (blood status, cancer), (credit trans-
action information, fraud), (sound profile of jet engine,
defect)

Goal Estimate y ∈ {±1} given x at a new location. Or
find a function f (x) that does the trick.



Regression
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Regression
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Data
Pairs of observations (xi, yi) generated from some joint
distribution Pr(x, y), e.g.,

market index, SP100
fab parfameters, yield
user profile, price

Task
Estimate y, given x, such that some loss c(x, y, f (x)) is
minimized.

Examples

Quadratic error between y and f (x), i.e.
c(x, y, f (x)) = 1

2(y − f (x))2.
Absolute value, i.e., c(x, y, f (x)) = |y − f (x))|.



Annotating Strings
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Annotating Audio
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Goal
Possible meaning of an audio sequence
Give confidence measure

Example (from Australian Prime Minister’s speech)
a stray alien
Australian



Novelty Detection
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Data
Observations (xi)
generated from
some P(x), e.g.,

network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.



What Machine Learning is not
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Logic
If A meets B and B meets C, does A know C?
Rule satisfaction
Logical rules from data

Artificial Intelligence
Understanding of the world
Meet Sunny from I, Robot
Go and get me a bottle of beer (robot need not under-
stand what it is doing)

Biology and Neuroscience
Understand the brain by building neural networks?!?
Model brain and build good systems with that
Get inspiration from biology but no requirement to
build systems like that (e.g. jet planes don’t flap wings)



How the brain doesn’t work
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Statistics and Probability Theory
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Why do we need it?
We deal with uncertain events
Need mathematical formulation for probabilities
Need to estimate probabilities from data (e.g. for coin
tosses, we only observe number of heads and tails,
not whether the coin is really unbiased).

How do we use it?
Statement about probability that an object is an apple
(rather than an orange)
Probability that two things happen at the same time
Find unusual events (= low density events)
Conditional events (e.g. what happens if A, B, and C
are true)



Probability
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Basic Idea
We have events in a space of possible outcomes. Then
Pr(X) tells us how likely is that an event x ∈ X will occur.

Basic Axioms
Pr(X) ∈ [0, 1] for all X ⊆ X
Pr(X) = 1

Pr (∪iXi) =
∑

i

Pr(Xi) if Xi ∩Xj = ∅ for all i 6= j

Simple Corollary

Pr(X ∪ Y ) = Pr(X) + Pr(Y )− Pr(X ∩ Y )



Example
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Multiple Variables
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Two Sets
Assume that X and Y are a probability measure on the
product space of X and Y. Consider the space of events
(x, x) ∈ X× Y.

Independence
If x and y are independent, then for all X ⊂ X and Y ⊂ Y

Pr(X,Y ) = Pr(X) · Pr(Y ).



Independent Random Variables
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Dependent Random Variables
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Bayes Rule
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Dependence and Conditional Probability
Typically, knowing x will tell us something about y (think
regression or classification). We have

Pr(Y |X) Pr(X) = Pr(Y, X) = Pr(X|Y ) Pr(Y ).

Hence Pr(Y, X) ≤ min(Pr(X), Pr(Y )).
Bayes Rule

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )
.

Proof using conditional probabilities

Pr(X,Y ) = Pr(X|Y ) Pr(Y ) = Pr(Y |X) Pr(X)



Example
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Pr(X ∩X ′) = Pr(X|X ′) Pr(X ′) = Pr(X ′|X) Pr(X)



AIDS Test
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How likely is it to have AIDS if the test says so?
Assume that roughly 0.1% of the population is infected.

p(X = AIDS) = 0.001

The AIDS test reports positive for all infections.

p(Y = test positive|X = AIDS) = 1

The AIDS test reports positive for 1% healthy people.

p(Y = test positive|X = healthy) = 0.01

We use Bayes rule to infer Pr(AIDS|test positive) via

Pr(Y |X) Pr(X)

Pr(Y )
=

Pr(Y |X) Pr(X)

Pr(Y |X) Pr(X) + Pr(Y |X\X) Pr(X\X)

= 1·0.001
1·0.001+0.01·0.999 = 0.091



Eye Witness
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Evidence from an Eye-Witness
A witness is 90% certain that a certain customer commit-
ted the crime. There were 20 people in the bar . . .

Would you convict the person?
Everyone is presumed innocent until guilty, hence

p(X = guilty) = 1/20

Eyewitness has equal confusion probability

p(Y = eyewitness identifies|X = guilty) = 0.9

and p(Y = eyewitness identifies|X = not guilty) = 0.1

Bayes Rule

Pr(X|Y ) = 0.9·0.05
0.9·0.05+0.1·0.95 = 0.3213 = 32%

But most judges would convict him anyway . . .



Improving Inference
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Follow up on the AIDS test:
The doctor performs a, conditionally independent test
which has the following properties:

The second test reports positive for 90% infections.
The AIDS test reports positive for 5% healthy people.

Pr(T1, T2|Health) = Pr(T1|Health) Pr(T2|Health).

A bit more algebra reveals (assuming that both tests are
independent): 0.01·0.05·0.999

0.01·0.05·0.999+1·0.9·0.001 = 0.357.

Conclusion:
Adding extra observations can improve the confidence
of the test considerably.



Different Contexts
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Hypothesis Testing:

Is solution A or B better to solve the problem (e.g. in
manufacturing)?
Is a coin tainted?
Which parameter setting should we use?

Sensor Fusion:

Evidence from sensors A and B (cf. AIDS test 1 and
2).
We have different types of data.

More Data:

We obtain two sets of data — we get more confident
Each observation can be seen as an additional test



Estimating Probabilities from Data
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Rolling a dice:
Roll the dice many times and count how many times
each side comes up. Then assign empirical probability
estimates according to the frequency of occurrence.

Maximum Likelihood for Multinomial Distribution:
We match the empirical probabilities via

Pr
emp

(i) = #occurrences of i
#trials

In plain English this means that we take the number of
occurrences of a particular event (say 7 times head) and
divide this by the total number of trials (say 10 times).
This yields 0.7.



Maximum Likelihood Proof
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Goal
We want to estimate the parameter π ∈ Rn such that

Pr(X|π) =

m∏
j=1

Pr(Xj|π) =

n∏
i=1

π#i
i

is maximized while π is a probability (reparameterize
πi = eθi).

Constrained Optimization Problem

minimize
n∑

i=1

−#i · θi subject to
n∑

i=1

eθi = 1

Lagrange Function

L(π, γ) =

n∑
i=1

−#i · θi + γ

(
1−

n∑
i=1

eθi

)



Maximum Likelihood Proof
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First Order Optimality Conditions

L(π, α, γ) =

n∑
i=1

−#i · θi + γ

(
n∑

i=1

eθi − 1

)
∂θi

= −#i + γeθi vanishes

=⇒ πi = eθi =
#i

γ

Finally, the sum constraint is satisfied if γ =
∑

i #i.



Practical Example
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Properties of MLE
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Hoeffding’s Bound
The probability estimates converge exponentially fast

Pr{|πi − pi| > ε} ≤ 2 exp(−2mε2)

Problem
For small ε this can still take a very long time. In par-
ticular, for a fixed confidence level δ we have

δ = 2 exp(−2mε2) =⇒ ε =

√
− log δ + log 2

2m

The above bound holds only for single πi, not uni-
formly over all i.

Improved Approach
If we know something about πi, we should use this extra
information: use priors.



Summary
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Data
What to do with data

Unsupervised learning (clustering, embedding, etc.),
Classification, sequence annotation, Regression, . . .

Statistics and probability theory
Probability of an event
Dependence, independence, conditional probability
Bayes rule, Hypothesis testing
Maximum Likelihood Estimation
Confidence bounds
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Day 1
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Machine learning and probability theory
Introduction to pattern recognition, classification, regres-
sion, novelty detection, probability theory, Bayes rule, in-
ference

Density estimation and Parzen windows
Kernels and density estimation, Silverman’s rule, Wat-
son Nadaraya estimator, crossvalidation

Perceptron and kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernel trick, examples

Support Vector classification
Geometrical view, dual problem, convex optimization,
kernels and SVM



L2 Density estimation
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Density estimation
empirical frequency, bin counting
priors and Laplace rule

Parzen windows
Smoothing out the estimates
Examples

Adjusting parameters
Cross validation
Silverman’s rule

Classification and regression with Parzen windows
Watson-Nadaraya estimator
Nearest neighbor classifier



Tossing a dice (again)
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Priors to the Rescue
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Big Problem
Only sampling many times gets the parameters right.

Rule of Thumb
We need at least 10-20 times as many observations.

Priors
Often we know what we should expect. Using a con-
jugate prior helps. There insert fake additional data
which we assume that it comes from the prior.

Practical Example
If we assume that the dice is even, then we can add m0

observations to each event 1 ≤ i ≤ 6. This yields

πi =
#occurrences of i + ui − 1

#trials +
∑

j(uj − 1)
.

For m0 = 1 this is the famous Laplace Rule .



Example: Dice
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20 tosses of a dice

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.25 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17

Consequences
Stronger prior brings the estimate closer to uniform
distribution.
More robust against outliers
But: Need more data to detect deviations from prior



Correct dice

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 7



Tainted dice
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Density Estimation
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Data
Continuous valued random variables.

Naive Solution
Apply the bin-counting strategy to the continuum. That
is, we discretize the domain into bins.

Problems
We need lots of data to fill the bins
In more than one dimension the number of bins grows
exponentially:
Assume 10 bins per dimension, so we have 10 in R1

100 bins in R2

1010 bins (10 billion bins) in R10 . . .



Mixture Density
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Sampling from p(x)
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Bin counting
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Parzen Windows
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Naive approach
Use the empirical density

pemp(x) =
1

m

m∑
i=1

δ(x, xi).

which has a delta peak for every observation.
Problem

What happens when we see slightly different data?
Idea

Smear out pemp by convolving it with a kernel k(x, x′).
Here k(x, x′) satisfies∫

X

k(x, x′)dx′ = 1 for all x ∈ X.



Parzen Windows
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Estimation Formula
Smooth out pemp by convolving it with a kernel k(x, x′).

p(x) =
1

m

m∑
i=1

k(xi, x)

Adjusting the kernel width
Range of data should be adjustable
Use kernel function k(x, x′) which is a proper kernel.
Scale kernel by radius r. This yields

kr(x, x′) := rnk(rx, rx′)

Here n is the dimensionality of x.



Discrete Density Estimate
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Smoothing Function
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Density Estimate
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Examples of Kernels
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Gaussian Kernel

k(x, x′) =
(
2πσ2

)n
2 exp

(
− 1

2σ2
‖x− x′‖2

)
Laplacian Kernel

k(x, x′) = λn2−n exp (−λ‖x− x′‖1)

Indicator Kernel

k(x, x′) = 1[−0.5,0.5](x− x′)

Important Issue
Width of the kernel is usually much more important than
type .



Gaussian Kernel
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Laplacian Kernel
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Indicator Kernel
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Gaussian Kernel
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Laplacian Kernel
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Laplacian Kernel
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Selecting the Kernel Width
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Goal
We need a method for adjusting the kernel width.

Problem
The likelihood keeps on increasing as we narrow the ker-
nels.

Reason
The likelihood estimate we see is distorted (we are being
overly optimistic through optimizing the parameters).

Possible Solution
Check the performance of the density estimate on an
unseen part of the data. This can be done e.g. by

Leave-one-out crossvalidation
Ten-fold crossvalidation



Expected log-likelihood
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What we really want
A parameter such that in expectation the likelihood of
the data is maximized

pr(X) =

m∏
i=1

pr(xi)

or equivalently
1

m
log pr(X) =

1

m

m∑
i=1

log pr(xi).

However, if we optimize r for the seen data, we will
always overestimate the likelihood.

Solution: Crossvalidation
Test on unseen data
Remove a fraction of data from X, say X ′, estimate
using X\X ′ and test on X ′.



Crossvalidation Details
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Basic Idea
Compute p(X ′|θ(X\X ′)) for various subsets of X and av-
erage over the corresponding log-likelihoods.

Practical Implementation
Generate subsets Xi ⊂ X and compute the log-
likelihood estimate

1

n

n∑
i

1

|Xi|
log p(Xi|θ(X|\Xi))

Pick the parameter which maximizes the above estimate.
Special Case: Leave-one-out Crossvalidation

pX\xi
(xi) =

m

m− 1
pX(xi) −

1

m− 1
k(xi, xi)



Cross Validation
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Best Fit ( λ = 1.9)
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Application: Novelty Detection
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Goal
Find the least likely observations xi from a dataset X.
Alternatively, identify low-density regions, given X.

Idea
Perform density estimate pX(x) and declare all xi with
pX(xi) < p0 as novel.

Algorithm
Simply compute f (xi) =

∑
j k(xi, xj) for all i and sort ac-

cording to their magnitude.



Applications
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Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),
home alarm (furniture, temperature, windows, etc.)



Order Statistic of Densities
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Typical Data
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Outliers
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Silverman’s Automatic Adjustment
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Problem
One ’width fits all’ does not work well whenever we have
regions of high and of low density.

Idea
Adjust width such that neighbors of a point are included
in the kernel at a point. More specifically, adjust range hi

to yield
hi =

r

k

∑
xj∈NN(xi,k)

‖xj − xi‖

where NN(xi, k) is the set of k nearest neighbors of xi

and r is typically chosen to be 0.5.
Result

State of the art density estimator, regression estimator
and classifier.



Sampling from p(x)
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Uneven Scales
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Neighborhood Scales
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Adjusted Width
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Watson-Nadaraya Estimator
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Goal
Given pairs of observations (xi, yi) with yi ∈ {±1} find
estimator for conditional probability Pr(y|x).

Idea
Use definition p(x, y) = p(y|x)p(x) and estimate both p(x)
and p(x, y) using Parzen windows. Using Bayes rule this
yields

Pr(y = 1|x) =
P (y = 1, x)

P (x)
=

m−1
∑

yi=1 k(xi, x)

m−1
∑

i k(xi, x)

Bayes optimal decision
We want to classify y = 1 for Pr(y = 1|x) > 0.5. This is
equivalent to checking the sign of

Pr(y = 1|x) − Pr(y = −1|x) =
∑

i

yik(xi, x)



Training Data
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Watson Nadaraya Classifier
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Difference in Signs
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Watson Nadaraya Regression
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Decision Boundary
Picking y = 1 or y = −1 depends on the sign of

Pr(y = 1|x) − Pr(y = −1|x) =

∑
i yik(xi, x)∑
i k(xi, x)

Extension to Regression
Use the same equation for regression. This means
that

f (x) =

∑
i yik(xi, x)∑
i k(xi, x)

where now yi ∈ R.
We get a locally weighted version of the data



Regression Problem
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Watson Nadaraya Regression
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Nearest Neighbor Classifier
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Extension of Silverman’s trick
Use the density estimator for classification and regres-
sion.

Simplification
Rather than computing a weighted combination of labels
to estimate the label, use an unweighted combination
over the nearest neighbors.

Result
k-nearest neighbor classifier. Often used as baseline to
compare a new algorithm.

Nice Properties
Given enough data, k-nearest neighbors converges to
the best estimator possible (it is consistent).



Practical Implementation
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Nearest Neighbor Rule
Need distance measure between data
Given data x, find nearest point xi

Classify according to the label yi

k-Nearest Neighbor Rule
Find k nearest neighbors of x
Decide class of x according to majority of labels yi.
Hence prefer odd k.

Neighborhood Search Algorithms
Brute force search (OK if data not too large)
Random projection tricks (fast but difficult)
Neighborhood trees (very fast, implementation tricky)

Baseline
Use k-NN as reference before fancy algorithms.



Summary

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 49

Density estimation
empirical frequency, bin counting
priors and Laplace rule

Parzen windows
Smoothing out the estimates
Examples

Adjusting parameters
Cross validation
Silverman’s rule

Classification and regression with Parzen windows
Watson-Nadaraya estimator
Nearest neighbor classifier
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Day 1
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Machine learning and probability theory
Introduction to pattern recognition, classification, regres-
sion, novelty detection, probability theory, Bayes rule, in-
ference

Density estimation and Parzen windows
Kernels and density estimation, Silverman’s rule, Wat-
son Nadaraya estimator, crossvalidation

Perceptron and kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernel trick, examples

Support Vector classification
Geometrical view, dual problem, convex optimization,
kernels and SVM



L3 Perceptron and Kernels
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Hebb’s rule
positive feedback
perceptron convergence rule

Hyperplanes
Linear separability
Inseparable sets

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Kernel perceptron



Biology and Learning
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Basic Idea
Good behavior should be rewarded, bad behavior
punished (or not rewarded). This improves the fitness
of the system.
Example: hitting a sabertooth tiger over the head
should be rewarded . . .
Correlated events should be combined.
Example: Pavlov’s salivating dog.

Training Mechanisms
Behavioral modification of individuals (learning) —
successful behavior is rewarded (e.g. food).
Hard-coded behavior in the genes (instinct) — the
wrongly coded animal dies.



Neurons
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Soma
Cell body. Here the signals
are combined (“CPU”).

Dendrite
Combines the inputs from
several other nerve cells
(“input bus”).

Synapse
Interface between two neurons (“connector”).

Axon
This may be up to 1m long and will transport the acti-
vation signal to nerve cells at different locations (“output
cable”).



Perceptron
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Perceptrons
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Weighted combination
The output of the neuron is a linear combination of
the inputs (from the other neurons via their axons)
rescaled by the synaptic weights.
Often the output does not directly correspond to the
activation level but is a monotonic function thereof.

Decision Function
At the end the results are combined into

f (x) = σ

(
n∑

i=1

wixi + b

)
.



Separating Half Spaces
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Linear Functions
An abstract model is to assume that

f (x) = 〈w, x〉 + b

where w, x ∈ Rm and b ∈ R.
Biological Interpretation

The weights wi correspond to the synaptic weights (acti-
vating or inhibiting), the multiplication corresponds to the
processing of inputs via the synapses, and the summa-
tion is the combination of signals in the cell body (soma).

Applications
Spam filtering (e-mail), echo cancellation (old analog
overseas cables)

Learning
Weights are “plastic” — adapted via the training data.



Linear Separation
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Perceptron Algorithm
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argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w, b) = Perceptron(X, Y, η)
initialize w, b = 0
repeat

Pick (xi, yi) from data
if yi(w · xi + b) ≤ 0 then

w′ = w + yixi

b′ = b + yi

until yi(w · xi + b) > 0 for all i
end



Interpretation
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Algorithm
Nothing happens if we classify (xi, yi) correctly
If we see incorrectly classified observation we update
(w, b) by yi(xi, 1).
Positive reinforcement of observations.

Solution
Weight vector is linear combination of observations xi:

w ←− w + yixi

Classification can be written in terms of dot products:

w · x + b =
∑
j∈E

yjxj · x + b



Theoretical Analysis
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Incremental Algorithm
Already while the perceptron is learning, we can use it.

Convergence Theorem (Rosenblatt and Novikoff)
Suppose that there exists a ρ > 0, a weight vector w∗

satisfying ‖w∗‖ = 1, and a threshold b∗ such that

yi (〈w∗, xi〉 + b∗) ≥ ρ for all 1 ≤ i ≤ m.

Then the hypothesis maintained by the perceptron algo-
rithm converges to a linear separator after no more than

(b∗2 + 1)(R2 + 1)

ρ2

updates, where R = maxi ‖xi‖.



Solutions of the Perceptron

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 13



Proof, Part I
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Starting Point
We start from w1 = 0 and b1 = 0.

Step 1: Bound on the increase of alignment
Denote by wi the value of w at step i (analogously bi).

Alignment: 〈(wi, bi), (w
∗, b∗)〉

For error in observation (xi, yi) we get

〈(wj+1, bj+1) · (w∗, b∗)〉
= 〈[(wj, bj) + yi(xi, 1)] , (w∗, b∗)〉
= 〈(wj, bj), (w

∗, b∗)〉 + ηyi〈(xi, 1) · (w∗, b∗)〉
≥ 〈(wj, bj), (w

∗, b∗)〉 + ηρ

≥ jηρ.

Alignment increases with number of errors.



Proof, Part II
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Step 2: Cauchy-Schwartz for the Dot Product

〈(wj+1, bj+1) · (w∗, b∗)〉 ≤ ‖(wj+1, bj+1)‖ ‖(w∗, b∗)‖
=
√

1 + (b∗)2‖(wj+1, bj+1)‖
Step 3: Upper Bound on ‖(wj, bj)‖

If we make a mistake we have

‖(wj+1, bj+1)‖2 = ‖(wj, bj) + yi(xi, 1)‖2
= ‖(wj, bj)‖2 + 2yi〈(xi, 1), (wj, bj)〉 + ‖(xi, 1)‖2
≤ ‖(wj, bj)‖2 + ‖(xi, 1)‖2
≤ j(R2 + 1).

Step 4: Combination of first three steps

jηρ ≤
√

1 + (b∗)2‖(wj+1, bj+1)‖ ≤
√

j(R2 + 1)((b∗)2 + 1)

Solving for j proves the theorem.



What does it mean?
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Learning Algorithm
We perform an update only if we make a mistake.

Convergence Bound
Bounds the maximum number of mistakes in total.
We will make at most (b∗2 + 1)(R1 + 1)/ρ2 mistakes in
the case where a “correct” solution w∗, b∗ exists.
This also bounds the expected error (if we know ρ, R,
and |b∗|).

Dimension Independent
Bound does not depend on the dimensionality of X.

Sample Expansion
We obtain x as a linear combination of xi.



Realizable and Non-realizable Concepts
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Realizable Concept
Here some w∗, b∗ exists such that y is generated by
y = sgn (〈w∗, x〉 + b). In general realizable means that
the exact functional dependency is included in the class
of admissible hypotheses.

Unrealizable Concept
In this case, the exact concept does not exist or it is not
included in the function class.



The XOR Problem
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Training data
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Perceptron algorithm (i=7)
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Perceptron algorithm (i=16)
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Perceptron algorithm (i=2)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 22



Perceptron algorithm (i=4)
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Perceptron algorithm (i=16)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24



Perceptron algorithm (i=2)
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Perceptron algorithm (i=16)
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Perceptron algorithm (i=12)
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Perceptron algorithm (i=16)
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Perceptron algorithm (i=20)
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Stochastic Gradient Descent, 1
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Linear Function
f (x) = 〈w, x〉 + b

Objective Function

R[f ] :=
1

m

m∑
i=1

max(0,−yif (xi))

=

m∑
i=1

max (0,−yi (〈w, xi〉 + b))

Stochastic Gradient
We use each term in the sum as a stochastic approxi-
mation of the overall objective function:

w ←− w − η∂w (0,−yi (〈w, xi〉 + b))

b←− b− η∂b (0,−yi (〈w, xi〉 + b))



Stochastic Gradient Descent, 2
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Details

∂w max (0,−yi (〈w, xi〉 + b)) =

{
−yixi for f (xi) < 0
0 otherwise

∂b max (0,−yi (〈w, xi〉 + b)) =

{
−yi for f (xi) < 0
0 otherwise

Overall Strategy
Have complicated function consisting of lots of terms
Want to minimize this monster
Solve it performing descent into one direction at a time
Randomly pick directions and converge
Often need to adjust learning rate η



Nonlinearity via Preprocessing
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Problem
Linear functions are often too simple to provide good es-
timators.

Idea
Map to a higher dimensional feature space via Φ : x→
Φ(x) and solve the problem there.
Replace every 〈x, x′〉 by 〈Φ(x), Φ(x′)〉 in the perceptron
algorithm.

Consequence
We have nonlinear classifiers.
Solution lies in the choice of features Φ(x).



Nonlinearity via Preprocessing
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Features
Quadratic features correspond to circles, hyperbolas and
ellipsoids as separating surfaces.



Constructing Features
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Idea
Construct features manually. E.g. for OCR we could use



More Examples
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Two Interlocking Spirals
If we transform the data (x1, x2) into a radial part (r =√

x2
1 + x2

2) and an angular part (x1 = r cos φ, x1 = r sin φ),
the problem becomes much easier to solve (we only
have to distinguish different stripes).

Japanese Character Recognition
Break down the images into strokes and recognize it
from the latter (there’s a predefined order of them).

Medical Diagnosis
Include physician’s comments, knowledge about un-
healthy combinations, features in EEG, . . .

Suitable Rescaling
If we observe, say the weight and the height of a person,
rescale to zero mean and unit variance.



Perceptron on Features
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argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w, b) = Perceptron(X, Y, η)
initialize w, b = 0
repeat

Pick (xi, yi) from data
if yi(w · Φ(xi) + b) ≤ 0 then

w′ = w + yiΦ(xi)
b′ = b + yi

until yi(w · Φ(xi) + b) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yj(Φ(xj) · Φ(x)) + b



Problems with Constructing Features
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Problems
Need to be an expert in the domain (e.g. Chinese
characters).
Features may not be robust (e.g. postman drops letter
in dirt).
Can be expensive to compute.

Solution
Use shotgun approach.
Compute many features and hope a good one is
among them.
Do this efficiently.



Polynomial Features
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Quadratic Features in R2

Φ(x) :=
(
x2

1,
√

2x1x2, x
2
2

)
Dot Product

〈Φ(x), Φ(x′)〉 =
〈(

x2
1,
√

2x1x2, x
2
2

)
,
(
x′1

2
,
√

2x′1x
′
2, x
′
2
2
)〉

= 〈x, x′〉2.
Insight

Trick works for any polynomials of order d via 〈x, x′〉d.



Kernels
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Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X× X → R is a symmetric function
in its arguments for which the following property holds

k(x, x′) = 〈Φ(x), Φ(x′)〉 for some feature map Φ.

If k(x, x′) is much cheaper to compute than Φ(x) . . .



Polynomial Kernels in Rn
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Idea
We want to extend k(x, x′) = 〈x, x′〉2 to

k(x, x′) = (〈x, x′〉 + c)
d where c > 0 and d ∈ N.

Prove that such a kernel corresponds to a dot product.
Proof strategy

Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

k(x, x′) = (〈x, x′〉 + c)
d

=

m∑
i=0

(
d

i

)
(〈x, x′〉)i cd−i

Individual terms (〈x, x′〉)i are dot products for some Φi(x).



Kernel Perceptron

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function f = Perceptron(X,Y, η)
initialize f = 0
repeat

Pick (xi, yi) from data
if yif (xi) ≤ 0 then

f (·)← f (·) + yik(xi, ·) + yi

until yif (xi) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yjk(xj, x) + b.



Are all k(x, x′) good Kernels?
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Computability
We have to be able to compute k(x, x′) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x, x′) = k(x′, x) due to the symmetry of the
dot product 〈Φ(x), Φ(x′)〉 = 〈Φ(x′), Φ(x)〉.

Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?



Mercer’s Theorem
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The Theorem
For any symmetric function k : X × X → R which is
square integrable in X× X and which satisfies∫

X×X

k(x, x′)f (x)f (x′)dxdx′ ≥ 0 for all f ∈ L2(X)

there exist φi : X→ R and numbers λi ≥ 0 where

k(x, x′) =
∑

i

λiφi(x)φi(x
′) for all x, x′ ∈ X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we have∑

i

∑
j

k(xi, xj)αiαj ≥ 0



Properties of the Kernel
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Distance in Feature Space
Distance between points in feature space via

d(x, x′)2 :=‖Φ(x)− Φ(x′)‖2

=〈Φ(x), Φ(x)〉 − 2〈Φ(x), Φ(x′)〉 + 〈Φ(x′), Φ(x′)〉
=k(x, x) + k(x′, x′)− 2k(x, x)

Kernel Matrix
To compare observations we compute dot products, so
we study the matrix K given by

Kij = 〈Φ(xi), Φ(xj)〉 = k(xi, xj)

where xi are the training patterns.
Similarity Measure

The entries Kij tell us the overlap between Φ(xi) and
Φ(xj), so k(xi, xj) is a similarity measure.



Properties of the Kernel Matrix
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K is Positive Semidefinite
Claim: α>Kα ≥ 0 for all α ∈ Rm and all kernel matrices
K ∈ Rm×m. Proof:
m∑
i,j

αiαjKij =

m∑
i,j

αiαj〈Φ(xi), Φ(xj)〉

=

〈
m∑
i

αiΦ(xi),
m∑
j

αjΦ(xj)

〉
=

∥∥∥∥∥
m∑

i=1

αiΦ(xi)

∥∥∥∥∥
2

Kernel Expansion
If w is given by a linear combination of Φ(xi) we get

〈w, Φ(x)〉 =

〈
m∑

i=1

αiΦ(xi), Φ(x)

〉
=

m∑
i=1

αik(xi, x).



A Counterexample
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A Candidate for a Kernel

k(x, x′) =

{
1 if ‖x− x′‖ ≤ 1
0 otherwise

This is symmetric and gives us some information about
the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute
the resulting “kernelmatrix” K. This yields

K =

 1 1 0
1 1 1
0 1 1

 and eigenvalues (
√

2−1)−1, 1 and (1−
√

2).

as eigensystem. Hence k is not a kernel.



Some Good Kernels
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Examples of kernels k(x, x′)

Linear 〈x, x′〉
Laplacian RBF exp (−λ‖x− x′‖)
Gaussian RBF exp

(
−λ‖x− x′‖2

)
Polynomial (〈x, x′〉 + c〉)d , c ≥ 0, d ∈ N
B-Spline B2n+1(x− x′)

Cond. Expectation Ec[p(x|c)p(x′|c)]
Simple trick for checking Mercer’s condition

Compute the Fourier transform of the kernel and check
that it is nonnegative.



Linear Kernel
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Laplacian Kernel
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Gaussian Kernel
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Polynomial (Order 3)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 51



B3-Spline Kernel
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Summary
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Hebb’s rule
positive feedback
perceptron convergence rule, kernel perceptron

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Mercer’s theorem
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Day 1
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Machine learning and probability theory
Introduction to pattern recognition, classification, regres-
sion, novelty detection, probability theory, Bayes rule, in-
ference

Density estimation and Parzen windows
Kernels and density estimation, Silverman’s rule, Wat-
son Nadaraya estimator, crossvalidation

Perceptron and kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernel trick, examples

Support Vector classification
Geometrical view, dual problem, convex optimization,
kernels and SVM



L4 Support Vector Classification
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Support Vector Machine
Problem definition
Geometrical picture
Optimization problem

Optimization Problem
Hard margin
Convexity
Dual problem
Soft margin problem



Classification
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Data
Pairs of observations (xi, yi) generated from some distri-
bution P(x, y), e.g., (blood status, cancer), (credit trans-
action, fraud), (profile of jet engine, defect)

Task
Estimate y given x at a new location.
Modification: find a function f (x) that does the task.



So Many Solutions
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One to rule them all . . .
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Optimal Separating Hyperplane
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Optimization Problem
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Margin to Norm
Separation of sets is given by 2

‖w‖ so maximize that.
Equivalently minimize ‖w‖.
Equivalently minimize ‖w‖2.

Constraints
Separation with margin, i.e.

〈w, xi〉 + b ≥ 1 if yi = 1

〈w, xi〉 + b ≤ −1 if yi = −1

Equivalent constraint

yi(〈w, xi〉 + b) ≥ 1



Optimization Problem
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Mathematical Programming Setting
Combining the above requirements we obtain

minimize
1

2
‖w‖2

subject to yi(〈w, xi〉 + b)− 1 ≥ 0 for all 1 ≤ i ≤ m

Properties
Problem is convex
Hence it has unique minimum
Efficient algorithms for solving it exist



Lagrange Function
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Objective Function
We have 1

2‖w‖
2.

Constraints

ci(w, b) := 1− yi(〈w, xi〉 + b) ≤ 0

Lagrange Function

L(w, b, α) = PrimalObjective +
∑

i

αici

=
1

2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w, xi〉 + b))

Saddle Point Condition
Partial derivatives of L with respect to w and b need to
vanish.



Solving the Equations
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Lagrange Function

L(w, b, α) =
1

2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w, xi〉 + b))

Saddlepoint condition

∂wL(w, b, α) = w −
m∑

i=1

αiyixi = 0 ⇐⇒ w =

m∑
i=1

αiyixi

∂bL(w, b, α) = −
m∑

i=1

αiyixi = 0 ⇐⇒
m∑

i=1

αiyi = 0

To obtain the dual optimization problem we have to sub-
stitute the values of w and b into L. Note that the dual
variables αi have the constraint αi ≥ 0.



Solving the Equations
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Dual Optimization Problem
After substituting in terms for b, w the Lagrange function
becomes

− 1

2

m∑
i,j=1

yiyj〈xi, xj〉 +

m∑
i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m

Practical Modification
Need to maximize dual objective function. Rewrite as

minimize
1

2

m∑
i,j=1

yiyj〈xi, xj〉 −
m∑

i=1

αi

subject to the above constraints.



Support Vector Expansion
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Solution in w =

m∑
i=1

αiyixi

w is given by a linear combination of training patterns
xi. Independent of the dimensionality of x.
w depends on the Lagrange multipliers αi.

Kuhn-Tucker-Conditions
At optimal solution Constraint · Lagrange Multiplier = 0
In our context this means

αi(1− yi(〈w, xi〉 + b)) = 0.

Equivalently we have

αi 6= 0 ⇐⇒ yi (〈w, xi〉 + b) = 1

Only points at the decision boundary can con-
tribute to the solution.



Kernels
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Nonlinearity via Feature Maps
Replace xi by Φ(xi) in the optimization problem.

Equivalent optimization problem

minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m

Decision Function

From w =

m∑
i=1

αiyiΦ(xi) we conclude

f (x) = 〈w, Φ(x)〉 + b =

m∑
i=1

αiyik(xi, x) + b.



Examples and Problems

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 15

Advantage
Works well when the data
is noise free.

Problem
Already a single wrong
observation can ruin ev-
erything — we require
yif (xi) ≥ 1 for all i.

Idea
Limit the influence of
individual observations
by making the constraints
less stringent (introduce
slacks).



Optimization Problem (Soft Margin)
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Recall: Hard Margin Problem

minimize
1

2
‖w‖2

subject to yi(〈w, xi〉 + b)− 1 ≥ 0

Softening the Constraints

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi(〈w, xi〉 + b)− 1+ξi ≥ 0 and ξi ≥ 0



Linear SVM C = 1
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Linear SVM C = 2
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Linear SVM C = 5
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Linear SVM C = 10
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Linear SVM C = 20
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Linear SVM C = 50
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Changing C

For clean data C doesn’t matter much.
For noisy data, large C leads to narrow margin (SVM
tries to do a good job at separating, even though it isn’t
possible)

Noisy data

Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Lagrange Function
We have m more constraints, namely those on the ξi, for
which we will use ηi as Lagrange multipliers.

L(w, b, ξ, α, η) =
1

2
‖w‖2+C

m∑
i=1

ξi+

m∑
i=1

αi (1− ξi − yi(〈w, xi〉 + b))−
m∑

i=1

ηiξi

Saddle Point Conditions

∂wL(w, b, ξ, α, η) = w −
m∑

i=1

αiyixi = 0 ⇐⇒ w =

m∑
i=1

αiyixi.

∂bL(w, b, ξ, α, η) =

m∑
i=1

−αiyi = 0 ⇐⇒
m∑

i=1

αiyi = 0.

C − αi − ηi = 0 ⇐⇒ αi ∈ [0, C]
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Optimization Problem

minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)−
m∑

i=1

αi

subject to
m∑

i=1

αiyi = 0 and C ≥ αi ≥ 0 for all 1 ≤ i ≤ m

Interpretation
Almost same optimization problem as before
Constraint on weight of each αi (bounds influence of
pattern).
Efficient solvers exist (more about that tomorrow).
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Changing C

For clean data C doesn’t matter much.
For noisy data, large C leads to more complicated
margin (SVM tries to do a good job at separating, even
though it isn’t possible)
Overfitting for large C

Noisy data

Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Insights
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Changing σ

For clean data σ doesn’t matter much.
For noisy data, small σ leads to more complicated
margin (SVM tries to do a good job at separating, even
though it isn’t possible)
Lots of overfitting for small σ

Noisy data

Clean data has few support vectors
Noisy data leads to data in the margins
More support vectors for noisy data
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Support Vector Machine
Problem definition
Geometrical picture
Optimization problem

Optimization Problem
Hard margin
Convexity
Dual problem
Soft margin problem



Today’s Summary
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Machine learning and probability theory
Introduction to pattern recognition, classification, regres-
sion, novelty detection, probability theory, Bayes rule, in-
ference

Density estimation and Parzen windows
Kernels and density estimation, Silverman’s rule, Wat-
son Nadaraya estimator, crossvalidation

Perceptron and kernels
Hebb’s rule, perceptron algorithm, convergence, feature
maps, kernel trick, examples

Support Vector classification
Geometrical view, dual problem, convex optimization,
kernels and SVM
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