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Measuring Independence

Problem
Given {(x1, y1), . . . , (xm, ym)} ∼ Pr(x , y) determine
whether Pr(x , y) = Pr(x) Pr(y).
Measure degree of dependence.

Applications
Independent component analysis
Dimensionality reduction and feature extraction
Statistical modeling

Indirect Approach
Perform density estimate of Pr(x , y)
Check whether the estimate approximately factorizes

Direct Approach
Check properties of factorizing distributions
E.g. kurtosis, covariance operators, etc.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 3 / 30



Measuring Independence

Problem
Given {(x1, y1), . . . , (xm, ym)} ∼ Pr(x , y) determine
whether Pr(x , y) = Pr(x) Pr(y).
Measure degree of dependence.

Applications
Independent component analysis
Dimensionality reduction and feature extraction
Statistical modeling

Indirect Approach
Perform density estimate of Pr(x , y)
Check whether the estimate approximately factorizes

Direct Approach
Check properties of factorizing distributions
E.g. kurtosis, covariance operators, etc.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 3 / 30



Measuring Independence

Problem
Given {(x1, y1), . . . , (xm, ym)} ∼ Pr(x , y) determine
whether Pr(x , y) = Pr(x) Pr(y).
Measure degree of dependence.

Applications
Independent component analysis
Dimensionality reduction and feature extraction
Statistical modeling

Indirect Approach
Perform density estimate of Pr(x , y)
Check whether the estimate approximately factorizes

Direct Approach
Check properties of factorizing distributions
E.g. kurtosis, covariance operators, etc.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 3 / 30



Measuring Independence

Problem
Given {(x1, y1), . . . , (xm, ym)} ∼ Pr(x , y) determine
whether Pr(x , y) = Pr(x) Pr(y).
Measure degree of dependence.

Applications
Independent component analysis
Dimensionality reduction and feature extraction
Statistical modeling

Indirect Approach
Perform density estimate of Pr(x , y)
Check whether the estimate approximately factorizes

Direct Approach
Check properties of factorizing distributions
E.g. kurtosis, covariance operators, etc.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 3 / 30



Covariance Operator

Linear Case
For linear functions f (x) = w>x and g(y) = v>y the
covariance is given by

Cov{f (x), g(y)} = w>Cv

This is a bilinear operator on the space of linear functions.
Nonlinear Case

Define C to be the operator with (f , g) → Cov {f , g}.

Theorem
C is a bilinear operator in f and g.

Proof.
We only show linearity in f : Cov {αf , g} = αCov {f , g}.
Moreover, for f + f ′ the covariance is additive.
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Independent random variables
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Dependent random variables
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Or are we just unlucky?
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Covariance operators

Criterion (Renyi, 1957)
Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space
Kernels k , l on X, Y with associated RKHSs F, G.
Assume bounded k , l on domain.

Mean operator

〈µx , f 〉 = Ex [f (x)] and 〈µy , g〉 = Ey [g(y)]

Covariance operator
Define covariance operator C via bilinear form

f>Cxyg = Cov{f , g} = Ex ,y [f (x)g(y)]− Ex [f (x)] Ey [g(y)]
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Hilbert Space Representation

Theorem
Provided that k , l are universal kernels ‖Cxy‖ = 0 if and only if
x , y are independent.

Proof.
Step 1: If x , y are dependent then there exist some

[0, 1]-bounded range f ∗, g∗ with Cov {f ∗, g∗} = ε > 0.
Step 2: Since k , l are universal there exist ε′ approximation of

f ∗, g∗ in F, G such that covariance of approximation does not
vanish.

Step 3: Hence the covariance operator Cxy is nonzero.
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A Test Statistic

Covariance operator

Cxy = Ex ,y [k(x , ·)l(y , ·)]− Ex [k(x , ·)] Ey [l(y , ·)]

Operator Norm
Use the norm of Cxy to test whether x and y are
independent. It also gives us a measure of dependence.

HSIC(Pr
xy

, F, G) := ‖Cxy‖2

where ‖·‖ denotes the Hilbert-Schmidt norm.
Frobenius Norm

For matrices we can define

‖M‖2 =
∑

ij

M2
ij = tr M>M.

Hilbert-Schmidt norm is generalization of Frobenius norm.
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Computing ‖Cxy‖2

Rank-one operators
For rank-one terms we have
‖f ⊗ g‖2 = 〈f ⊗ g, f ⊗ g〉HS = ‖f‖2 ‖g‖2.

Joint expectation
By construction of Cxy we exploit linearity and obtain

‖Cxy‖2 =〈Cxy , Cxy〉HS

= {Ex ,yEx ′,y ′ − 2Ex ,yEx ′Ey ′ + ExEyEx ′Ey ′}[
〈k(x , ·)l(y , ·), k(x ′, ·)l(y ′, ·)〉HS

]
= {Ex ,yEx ′,y ′ − 2Ex ,yEx ′Ey ′ + ExEyEx ′Ey ′}

[k(x , x ′)l(y , y ′)]

This is well-defined if k , l are bounded.
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Estimating
∥∥C2

xy

∥∥
Empirical criterion

HSIC(Z , F, G) :=
1

(m − 1)2 trKHLH

where Kij = k(xi , xj), Lij = l(yi , yj) and Hij = δij − m−2.

Theorem

EZ [HSIC(Z , F, G)] = HSIC(Pr
xy

, F, G) + O(1/m)

Proof: Sketch only.
Expand tr KHLH into terms of pairs, triples and quadruples of
indices of non-repeated terms, which lead to the proper
expectations and bound the rest by O(m−1).
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Uniform convergence bounds for
∥∥C2

xy

∥∥
Theorem (Recall Hoeffding’s theorem for U Statistics)
For averages over functions on r variables

u :=
1

(m)r

∑
imr

g(xi1 , . . . , xir )

which are bounded by a ≤ u ≤ b we have

Pr
u
{u − Eu[u] ≥ t} ≤ exp

(
−2t2dm/re

(b − a)2

)
In our statistic we have terms of 2, 3, and 4 random variables.
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Uniform convergence bounds for
∥∥C2

xy

∥∥
Corollary
Assume that k , l ≤. Then at least with probability 1 − δ∣∣∣∣HSIC(Z , F, G)− HSIC(Pr

xy
, F, G)

∣∣∣∣ ≤
√

log 6/δ

0.24m
+

C
m

Proof.
Bound each of the three terms separatly via Hoeffding’s
theorem.
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Blind Source Separation

Data
w = Ms, where all si are mutually independent.

The Cocktail Party Problem

Task
Recover the sources S and mixing matrix M given W .
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Independent Component Analysis

Whitening
Rotate, center, and whiten data before separation. This is
always possible.

Optimization
We cannot recover scale of data anyway.
Need to find orthogonal matrix U such that Uw = s
leads to independent random variables.
Optimization on the Stiefel manifold.
Could do this by a Newton method.

Important Trick
Kernel matrix could be huge.
Use reduced-rank representation. We get

tr H(AA>)H(BB>) =
∥∥A>HB

∥∥2 instead of tr HKHL.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 17 / 30



Independent Component Analysis

Whitening
Rotate, center, and whiten data before separation. This is
always possible.

Optimization
We cannot recover scale of data anyway.
Need to find orthogonal matrix U such that Uw = s
leads to independent random variables.
Optimization on the Stiefel manifold.
Could do this by a Newton method.

Important Trick
Kernel matrix could be huge.
Use reduced-rank representation. We get

tr H(AA>)H(BB>) =
∥∥A>HB

∥∥2 instead of tr HKHL.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 17 / 30



Independent Component Analysis

Whitening
Rotate, center, and whiten data before separation. This is
always possible.

Optimization
We cannot recover scale of data anyway.
Need to find orthogonal matrix U such that Uw = s
leads to independent random variables.
Optimization on the Stiefel manifold.
Could do this by a Newton method.

Important Trick
Kernel matrix could be huge.
Use reduced-rank representation. We get

tr H(AA>)H(BB>) =
∥∥A>HB

∥∥2 instead of tr HKHL.

Alexander J. Smola: Hilbert Schmidt Independence Criterion 17 / 30



ICA Experiments
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Outlier Robustness
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Automatic Regularization
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Mini Summary

Linear mixture of independent sources
Remove mean and whiten for preprocessing
Use HSIC as measure of dependence
Find best rotation to demix the data

Performance
HSIC is very robust to outliers
General purpose criterion
Best performing algorithm (Radical) is designed for
linear ICA, HSIC is a general purpose criterion
Low rank decomposition makes optimization feasible
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Feature Selection

The Problem
Large number of features
Select a small subset of them

Basic Idea
Find features such that the distributions p(x |y = 1) and
p(x |y = −1) are as different as possible.
Use a two-sample test for that.

Important Tweak
We can find a similar criterion to measure dependence
between data and labels (by computing the Hilbert-Schmidt
norm of covariance operator).
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Recursive Feature Elimination

Algorithm
Start with full set of features
Adjust kernel width to pick up maximum discrepancy
Find feature which decreases dissimilarity the least
Remove this feature
Repeat

Applications
Binary classification (standard MMD criterion)
Multiclass
Regression
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Comparison to other feature selectors

Synthetic Data

Brain Computer Interface Data
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Frequency Band Selection
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Microarray Feature Selection

Goal
Obtain small subset of features for estimation
Reproducible feature selection

Results
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Shameless Plugs

Looking for a job . . . talk to me!
Alex.Smola@nicta.com.au (http://www.nicta.com.au)

Positions
PhD scholarships
Postdoctoral positions, Senior researchers
Long-term visitors (sabbaticals etc.)

More details on kernels
http://sml.nicta.com.au
http://www.kernel-machines.org
http://www.learning-with-kernels.org
Schölkopf and Smola: Learning with Kernels
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