Hilbert Schmidt Independence Criterion Thanks to Arthur Gretton, Le Song, Bernhard Schölkopf, Olivier Bousquet

Alexander J. Smola

Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au

ICONIP 2006, Hong Kong, October 3

Outline

Measuring Independence

- Covariance Operator
- Hilbert Space Methods
- A Test Statistic and its Analysis
- Independent Component Analysis
 ICA Primer
 - Examples
- 3 Feature Selection
 - Problem Setting
 - Algorithm
 - Results

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of $\Pr(x, y)$
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Covariance Operator

Linear Case

For linear functions $f(x) = w^{\top}x$ and $g(y) = v^{\top}y$ the covariance is given by

$$\operatorname{Cov}{f(x), g(y)} = w^{\top} C v$$

This is a bilinear operator on the space of linear functions. Ionlinear Case

Define *C* to be the operator with $(f, g) \rightarrow \text{Cov} \{f, g\}$.

Theorem

C is a bilinear operator in f and g.

Proof.

We only show linearity in f: Cov $\{\alpha f, g\} = \alpha$ Cov $\{f, g\}$. Moreover, for f + f' the covariance is additive.

Alexander J. Smola: Hilbert Schmidt Independence Criterion

4 / 30

Covariance Operator

Linear Case

For linear functions $f(x) = w^{\top}x$ and $g(y) = v^{\top}y$ the covariance is given by

$$\operatorname{Cov}{f(x), g(y)} = w^{\top} C v$$

This is a bilinear operator on the space of linear functions. Nonlinear Case

Define *C* to be the operator with $(f, g) \rightarrow \text{Cov} \{f, g\}$.

Theorem

C is a bilinear operator in f and g.

Proof.

We only show linearity in f: Cov { $\alpha f, g$ } = α Cov {f, g}. Moreover, for f + f' the covariance is additive.

Covariance Operator

Linear Case

For linear functions $f(x) = w^{\top}x$ and $g(y) = v^{\top}y$ the covariance is given by

$$\operatorname{Cov}{f(x), g(y)} = w^{\top} C v$$

This is a bilinear operator on the space of linear functions. Nonlinear Case

Define *C* to be the operator with $(f, g) \rightarrow \text{Cov} \{f, g\}$.

Theorem

C is a bilinear operator in f and g.

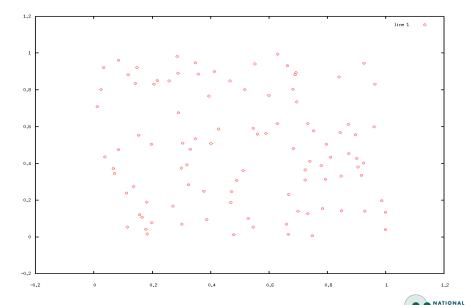
Proof.

We only show linearity in f: Cov { $\alpha f, g$ } = α Cov {f, g}. Moreover, for f + f' the covariance is additive.

Alexander J. Smola: Hilbert Schmidt Independence Criterion

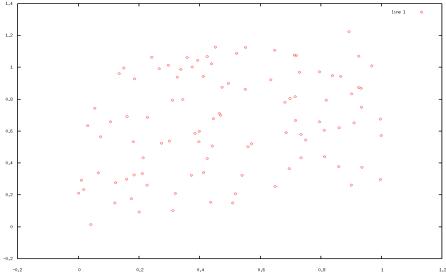
4/30

Independent random variables



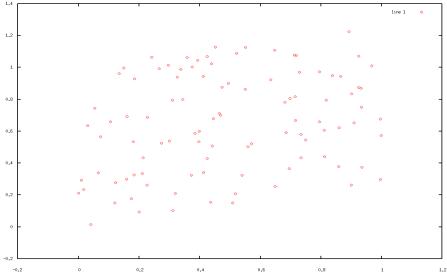
ICT AUSTRALIA

Dependent random variables



Alexander J. Smola: Hilbert Schmidt Independence Criterion

Or are we just unlucky?



Alexander J. Smola: Hilbert Schmidt Independence Criterion

Covariance operators

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_x, f \rangle = \mathsf{E}_x[f(x)] ext{ and } \langle \mu_y, g \rangle = \mathsf{E}_y[g(y)]$$

Covariance operator

Define covariance operator C via bilinear form

$$f^{\top} C_{xy} g = \operatorname{Cov} \{ f, g \} = \mathsf{E}_{x,y} \left[f(x) g(y) \right] - \mathsf{E}_{x} \left[f(x) \right] \mathsf{E}_{y} \left[g(y) \right]$$

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, I on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_x, f \rangle = \mathsf{E}_x[f(x)] ext{ and } \langle \mu_y, g \rangle = \mathsf{E}_y[g(y)]$$

Covariance operator

Define covariance operator C via bilinear form

$$f^{\top} C_{xy} g = \operatorname{Cov} \{ f, g \} = \mathsf{E}_{x,y} \left[f(x) g(y) \right] - \mathsf{E}_{x} \left[f(x) \right] \mathsf{E}_{y} \left[g(y) \right]$$

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_x, f
angle = {\sf E}_x[f(x)] ext{ and } \langle \mu_y, g
angle = {\sf E}_y[g(y)]$$

Covariance operator

Define covariance operator C via bilinear form

 $f^{\top}C_{xy}g = \operatorname{Cov}{f,g} = \mathsf{E}_{x,y}[f(x)g(y)] - \mathsf{E}_x[f(x)]\mathsf{E}_y[g(y)]$

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_x, f \rangle = \mathsf{E}_x[f(x)] ext{ and } \langle \mu_y, g \rangle = \mathsf{E}_y[g(y)]$$

Covariance operator

Define covariance operator C via bilinear form

$$f^{\top} C_{xy} g = \operatorname{Cov} \{f, g\} = \mathsf{E}_{x,y} \left[f(x) g(y) \right] - \mathsf{E}_{x} \left[f(x) \right] \mathsf{E}_{y} \left[g(y) \right]$$

Hilbert Space Representation

Theorem

Provided that k, l are universal kernels $||C_{xy}|| = 0$ if and only if x, y are independent.

Proof.

- Step 1: If *x*, *y* are dependent then there exist some [0, 1]-bounded range *f**, *g** with Cov {*f**, *g**} = ε > 0.
 Step 2: Since *k*, *l* are universal there exist ε' approximation of *f**, *g** in 𝔅, 𝔅 such that covariance of approximation does not vanish.
- **Step 3:** Hence the covariance operator C_{xy} is nonzero.

Covariance operator

$$C_{xy} = \mathsf{E}_{x,y}\left[k(x,\cdot)l(y,\cdot)\right] - \mathsf{E}_{x}\left[k(x,\cdot)\right]\mathsf{E}_{y}\left[l(y,\cdot)\right]$$

Operator Norm

Use the norm of C_{xy} to test whether x and y are independent. It also gives us a measure of dependence.

$$\mathrm{HSIC}(\Pr_{xy}, \mathcal{F}, \mathcal{G}) := \|\mathcal{C}_{xy}\|^2$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm. Frobenius Norm

For matrices we can define

$$\|\boldsymbol{M}\|^2 = \sum_{ij} M_{ij}^2 = \operatorname{tr} \boldsymbol{M}^\top \boldsymbol{M}.$$

Hilbert-Schmidt norm is generalization of Frobenius norm.

Covariance operator

$$C_{xy} = \mathsf{E}_{x,y} \left[k(x, \cdot) l(y, \cdot) \right] - \mathsf{E}_x \left[k(x, \cdot) \right] \mathsf{E}_y \left[l(y, \cdot) \right]$$

Operator Norm

Use the norm of C_{xy} to test whether x and y are independent. It also gives us a measure of dependence.

$$\mathrm{HSIC}(\Pr_{xy}, \mathcal{F}, \mathcal{G}) := \|\mathcal{C}_{xy}\|^2$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm. robenius Norm

For matrices we can define

$$\|\boldsymbol{M}\|^2 = \sum_{ij} M_{ij}^2 = \operatorname{tr} \boldsymbol{M}^\top \boldsymbol{M}.$$

Hilbert-Schmidt norm is generalization of Frobenius norm.

Covariance operator

$$C_{xy} = \mathsf{E}_{x,y} \left[k(x, \cdot) l(y, \cdot) \right] - \mathsf{E}_x \left[k(x, \cdot) \right] \mathsf{E}_y \left[l(y, \cdot) \right]$$

Operator Norm

Use the norm of C_{xy} to test whether x and y are independent. It also gives us a measure of dependence.

$$\mathrm{HSIC}(\Pr_{xy}, \mathcal{F}, \mathcal{G}) := \|\mathcal{C}_{xy}\|^2$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm. **Frobenius Norm**

For matrices we can define

$$\|\boldsymbol{M}\|^2 = \sum_{ij} M_{ij}^2 = \operatorname{tr} \boldsymbol{M}^\top \boldsymbol{M}.$$

Hilbert-Schmidt norm is generalization of Frobenius norm.

Computing $||C_{xy}||^2$

Rank-one operators

For rank-one terms we have $\|f \otimes g\|^2 = \langle f \otimes g, f \otimes g \rangle_{HS} = \|f\|^2 \|g\|^2.$

Joint expectation

By construction of C_{xy} we exploit linearity and obtain

$$\begin{aligned} \left\| C_{xy} \right\|^2 &= \langle C_{xy}, C_{xy} \rangle_{HS} \\ &= \left\{ \mathsf{E}_{x,y} \mathsf{E}_{x',y'} - 2 \mathsf{E}_{x,y} \mathsf{E}_{x'} \mathsf{E}_{y'} + \mathsf{E}_x \mathsf{E}_y \mathsf{E}_{x'} \mathsf{E}_{y'} \right\} \\ & \left[\langle k(x, \cdot) l(y, \cdot), k(x', \cdot) l(y', \cdot) \rangle_{HS} \right] \\ &= \left\{ \mathsf{E}_{x,y} \mathsf{E}_{x',y'} - 2 \mathsf{E}_{x,y} \mathsf{E}_{x'} \mathsf{E}_{y'} + \mathsf{E}_x \mathsf{E}_y \mathsf{E}_{x'} \mathsf{E}_{y'} \right\} \\ & \left[k(x, x') l(y, y') \right] \end{aligned}$$

This is well-defined if k, l are bounded.

Estimating $\|C_{xy}^2\|$

Empirical criterion

$$\mathrm{HSIC}(Z, \mathcal{F}, \mathcal{G}) := \frac{1}{(m-1)^2} \mathrm{tr} \mathcal{K} \mathcal{H} \mathcal{L} \mathcal{H}$$

where
$$K_{ij} = k(x_i, x_j), L_{ij} = l(y_i, y_j)$$
 and $H_{ij} = \delta_{ij} - m^{-2}$.

Theorem

$$\mathbf{E}_{Z}[\mathrm{HSIC}(Z, \mathfrak{F}, \mathfrak{G})] = \mathrm{HSIC}(\Pr_{XV}, \mathfrak{F}, \mathfrak{G}) + O(1/m)$$

Proof: Sketch only.

Expand tr *KHLH* into terms of pairs, triples and quadruples of indices of non-repeated terms, which lead to the proper expectations and bound the rest by $O(m^{-1})$.

12/30

ICT AUSTRALL

Estimating $\|C_{xy}^2\|$

Empirical criterion

$$\mathrm{HSIC}(Z, \mathcal{F}, \mathcal{G}) := \frac{1}{(m-1)^2} \mathrm{tr} K H L H$$

where
$$K_{ij} = k(x_i, x_j), L_{ij} = l(y_i, y_j)$$
 and $H_{ij} = \delta_{ij} - m^{-2}$.

Theorem

$$\mathbf{E}_{Z}[\mathrm{HSIC}(Z, \mathfrak{F}, \mathfrak{G})] = \mathrm{HSIC}(\Pr_{xy}, \mathfrak{F}, \mathfrak{G}) + O(1/m)$$

Proof: Sketch only.

Expand tr *KHLH* into terms of pairs, triples and quadruples of indices of non-repeated terms, which lead to the proper expectations and bound the rest by $O(m^{-1})$.

12/30

ICT AUSTRALL

Estimating $\|C_{xy}^2\|$

Empirical criterion

$$\mathrm{HSIC}(Z, \mathcal{F}, \mathcal{G}) := \frac{1}{(m-1)^2} \mathrm{tr} KHLH$$

where
$$K_{ij} = k(x_i, x_j), L_{ij} = l(y_i, y_j)$$
 and $H_{ij} = \delta_{ij} - m^{-2}$.

Theorem

$$\mathbf{E}_{Z}[\mathrm{HSIC}(Z, \mathcal{F}, \mathcal{G})] = \mathrm{HSIC}(\Pr_{xy}, \mathcal{F}, \mathcal{G}) + O(1/m)$$

Proof: Sketch only.

Expand tr *KHLH* into terms of pairs, triples and quadruples of indices of non-repeated terms, which lead to the proper expectations and bound the rest by $O(m^{-1})$.

ICT AUSTRALIA

Theorem (Recall Hoeffding's theorem for U Statistics)

For averages over functions on r variables

$$u:=\frac{1}{(m)_r}\sum_{i_r^m}g(x_{i_1},\ldots,x_{i_r})$$

which are bounded by $a \le u \le b$ we have

$$\Pr_{u} \left\{ u - \mathbf{E}_{u}[u] \geq t \right\} \leq \exp\left(-\frac{2t^{2} \lceil m/r \rceil}{(b-a)^{2}}\right)$$

In our statistic we have terms of 2, 3, and 4 random variables.

Corollary

Assume that $k, l \leq .$ Then at least with probability $1 - \delta$

$$|\operatorname{HSIC}(Z, \mathcal{F}, \mathcal{G}) - \operatorname{HSIC}(\Pr_{xy}, \mathcal{F}, \mathcal{G})| \leq \sqrt{\frac{\log 6/\delta}{0.24m} + \frac{C}{m}}$$

Proof.

Bound each of the three terms separatly via Hoeffding's theorem.

Outline

Measuring Independence

- Covariance Operator
- Hilbert Space Methods
- A Test Statistic and its Analysis

Independent Component Analysis ICA Primer Examples

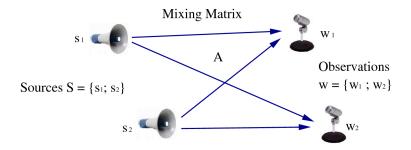
3 Feature Selection

- Problem Setting
- Algorithm
- Results

Data

w = Ms, where all s_i are mutually independent.

The Cocktail Party Problem



Task

Recover the sources S and mixing matrix M given W.

Independent Component Analysis

Whitening

Rotate, center, and whiten data before separation. This is always possible.

Optimization

- We cannot recover scale of data anyway.
- Need to find orthogonal matrix U such that Uw = s leads to independent random variables.
- Optimization on the Stiefel manifold.
- Could do this by a Newton method.

Important Trick

- Kernel matrix could be huge.
- Use reduced-rank representation. We get

tr $H(AA^{\top})H(BB^{\top}) = ||A^{\top}HB||^2$ instead of tr HKHL.

Independent Component Analysis

Whitening

Rotate, center, and whiten data before separation. This is always possible.

Optimization

- We cannot recover scale of data anyway.
- Need to find orthogonal matrix U such that Uw = s leads to independent random variables.
- Optimization on the Stiefel manifold.
- Could do this by a Newton method.

Important Trick

- Kernel matrix could be huge.
- Use reduced-rank representation. We get

tr $H(AA^{\top})H(BB^{\top}) = ||A^{\top}HB||^2$ instead of tr HKHL.

Independent Component Analysis

Whitening

Rotate, center, and whiten data before separation. This is always possible.

Optimization

- We cannot recover scale of data anyway.
- Need to find orthogonal matrix *U* such that *Uw* = *s* leads to independent random variables.
- Optimization on the Stiefel manifold.
- Could do this by a Newton method.

Important Trick

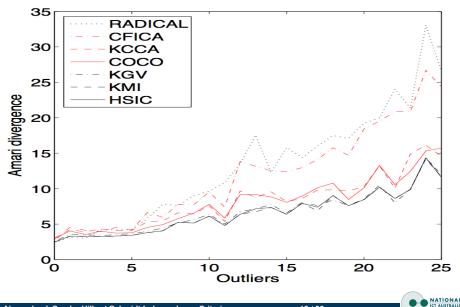
- Kernel matrix could be huge.
- Use reduced-rank representation. We get

tr
$$H(AA^{\top})H(BB^{\top}) = \|A^{\top}HB\|^2$$
 instead of tr $HKHL$

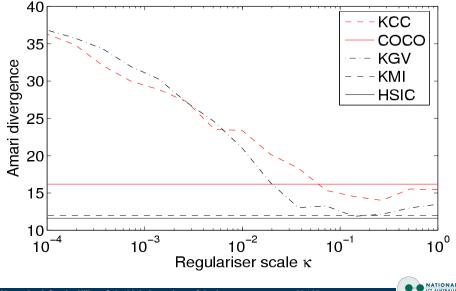
ICA Experiments

n	m	Rep.	FICA	Jade	IMAX	RAD	CFIC	KCC	COg	COI	KGV	KMlg	KMII	HSICg	HSICI
2	250	1000	$10.5\pm$	$9.5~\pm$	$44.4\pm$	$5.4 \pm$	$7.2~\pm$	$7.0 \pm$	7.8 \pm	$7.0~\pm$	$5.3 \pm$	$6.0 \pm$	$5.7 \pm$	$5.9~\pm$	$5.8 \pm$
			0.4	0.4	0.9	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.3
2	1000	1000	$6.0~\pm$	5.1 \pm	$11.3\pm$	$2.4 \pm$	$3.2~\pm$	$3.3~\pm$	$3.5~\pm$	$2.9~\pm$	$2.3 \pm$	$2.6~\pm$	$2.3 \pm$	$2.6~\pm$	$2.4 \pm$
			0.3	0.2	0.6	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
4	1000	100	$5.7~\pm$	$5.6~\pm$	$13.3\pm$	$2.5 \pm$	$3.3~\pm$	$4.5~\pm$	$4.2~\pm$	$4.6~\pm$	$3.1~\pm$	$4.0~\pm$	$3.5 \pm$	$2.7~\pm$	$2.5 \pm$
			0.4	0.4	1.1	0.1	0.2	0.4	0.3	0.6	0.6	0.7	0.7	0.1	0.2
4	4000	100	$3.1 \pm$	$2.3~\pm$	$5.9~\pm$	$1.3 \pm$	$1.5~\pm$	$2.4~\pm$	$1.9~\pm$	$1.6~\pm$	$1.4~\pm$	$1.4~\pm$	$1.2 \pm$	$1.3 \pm$	$1.2 \pm$
			0.2	0.1	0.7	0.1	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.05	0.05
8	2000	50	$4.1 \pm$	$3.6~\pm$	$9.3~\pm$	$1.8 \pm$	$2.4~\pm$	$4.8~\pm$	$3.7 \pm$	$5.2 \pm$	$2.6~\pm$	$2.1~\pm$	$1.9 \pm$	$1.9 \pm$	$1.8 \pm$
			0.2	0.2	0.9	0.1	0.1	0.9	0.9	1.3	0.3	0.1	0.1	0.1	0.1
8	4000	50	$3.2 \pm$	$2.7~\pm$	$6.4 \pm$	$1.3 \pm$	$1.6~\pm$	$2.1 \pm$	$2.0 \pm$	$1.9~\pm$	$1.7~\pm$	$1.4 \pm$	$1.3 \pm$	$1.4 \pm$	$1.3 \pm$
			0.2	0.1	0.9	0.05	0.1	0.2	0.1	0.1	0.2	0.1	0.05	0.05	0.05
16	5000	25	$2.9~\pm$	$3.1~\pm$	$9.4~\pm$	$1.2 \pm$	$1.7 \pm$	$3.7~\pm$	$2.4~\pm$	$2.6~\pm$	$1.7~\pm$	$1.5~\pm$	$1.5 \pm$	$1.3 \pm$	$1.3 \pm$
			0.1	0.3	1.1	0.05	0.1	0.6	0.1	0.2	0.1	0.1	0.1	0.05	0.05

Outlier Robustness



Automatic Regularization



Mini Summary

Linear mixture of independent sources

- Remove mean and whiten for preprocessing
- Use HSIC as measure of dependence
- Find best rotation to demix the data

Performance

- HSIC is very robust to outliers
- General purpose criterion
- Best performing algorithm (Radical) is designed for *linear* ICA, HSIC is a *general purpose criterion*
- Low rank decomposition makes optimization feasible

Mini Summary

Linear mixture of independent sources

- Remove mean and whiten for preprocessing
- Use HSIC as measure of dependence
- Find best rotation to demix the data

Performance

- HSIC is very robust to outliers
- General purpose criterion
- Best performing algorithm (Radical) is designed for *linear* ICA, HSIC is a *general purpose criterion*
- Low rank decomposition makes optimization feasible

Outline

Measuring Independence

- Covariance Operator
- Hilbert Space Methods
- A Test Statistic and its Analysis
- Independent Component Analysis
 ICA Primer
 - Examples

Feature Selection

- Problem Setting
- Algorithm
- Results

The Problem

- Large number of features
- Select a small subset of them

Basic Idea

- Find features such that the distributions p(x|y = 1) and p(x|y = −1) are as different as possible.
- Use a two-sample test for that.

Important Tweak

We can find a similar criterion to measure dependence between data and labels (by computing the Hilbert-Schmidt norm of covariance operator).

Recursive Feature Elimination

Algorithm

- Start with full set of features
- Adjust kernel width to pick up maximum discrepancy
- Find feature which decreases dissimilarity the least
- Remove this feature
- Repeat

Applications

- Binary classification (standard MMD criterion)
- Multiclass
- Regression

Algorithm 1 Feature Selection via Backward Elimination

Input: The full set of features S

Output: An ordered set of features S^{\dagger}

1:
$$\mathcal{S}^{\dagger} \leftarrow \emptyset$$

- 2: repeat
- $\sigma_0 \leftarrow \arg \max_{\sigma} \operatorname{HSIC}(\sigma, \mathcal{S})$ 3:
- 4: $i \leftarrow \arg \max_i \operatorname{HISC}(\sigma_0, \mathcal{S} \setminus \{i\}), i \in \mathcal{S}$
- 5: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$ 6: $\mathcal{S}^{\dagger} \leftarrow \mathcal{S}^{\dagger} \cup \{i\}$
- 7: until $S = \emptyset$

Comparison to other feature selectors

Synthetic Data

Table 1: Classification error (%) after selecting features using BAHSIC and 6 other methods.

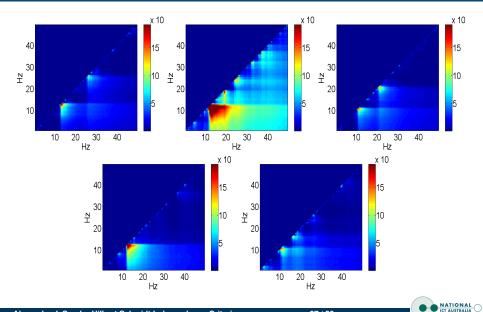
Method	Fisher	FSV	LO	MI	R2W2	RFE	BAHSIC
WL-6	10.0 ± 4.5	$2.0{\pm}2.0$	0.0 ± 0.0	6.0±3.1	0.0±0.0	0.0 ± 0.0	0.0±0.0
WN-2	57.0 ± 3.7	$58.0{\pm}5.3$	2.0±1.3	$18.0{\pm}2.9$	$54.0{\pm}6.5$	$2.0{\pm}1.3$	$1.0{\pm}1.0$

Brain Computer Interface Data

Table 2: Classification errors (%) on BCI data after selecting a frequency range.

Subject	aa	al	av	aw	ay
CSP(8-40Hz)	17.5 ± 2.5	3.1±1.2	32.1±2.5	7.3±2.7	6.0±1.6
CSSP	$14.9{\pm}2.9$	$2.4{\pm}1.3$	$33.0{\pm}2.7$	5.4±1.9	6.2±1.5
CSSSP	$12.2{\pm}2.1$	2.2±0.9	31.8±2.8	6.3±1.8	$12.7{\pm}2.0$
BAHSIC	13.7±4.3	1.9±1.3	30.5±3.3	6.1±3.8	9.0±6.0

Frequency Band Selection



Alexander J. Smola: Hilbert Schmidt Independence Criterion

27 / 30

Microarray Feature Selection

Goal

- Obtain small subset of features for estimation
- Reproducible feature selection

Results

Table 3: Comparison between SVM-RFE and BAHSIC for bioinformatics data. From top to bottom: data set description, classification errors in (%), and feature stability.

Dataset	Lymp	homa	Yea	ast	Colon	Berchuck	
Dim	402	26	7	9	2000	22283 30/24	
Sample	42/1	1/9	121/35/2	7/14/11	40/22		
	MC	OVR	MC	OVR			
SVM	32.4±6.9	32.4±6.9	5.3±2.1	5.8±1.8	17.6±5.1	43.3±6.9	
RFE	12.86±3.30	$0.00{\pm}0.00$	$30.36{\pm}2.39$	$6.76{\pm}2.10$	$22.38{\pm}6.05$	$30.00 {\pm} 7.57$	
BAHSIC	$0.00{\pm}0.00$	$0.00{\pm}0.00$	5.79 ±1.99	4.81±1.59	15.71±5.27	19.33±6.30	
RFE	0.77±0.09	$0.46{\pm}0.28$	0.41±0.31	$0.39{\pm}0.32$	0.38±0.11	0.57±0.28	
BAHSIC	0.96±0.03	0.96±0.03	$0.82{\pm}0.14$	$0.82{\pm}0.14$	0.90±0.06	0.73±0.19	

Table 4: Root mean square error (RMSE) of support vector regression with and without HSIC

Method	Sample	Dim	Feature	ϵ -SVR	RAND	BAHSIC
Pyrim	55	27	5	0.112 ± 0.067	0.092 ± 0.073	0.085±0.066
Triaz	186	60	2	$0.147 {\pm} 0.027$	0.157 ± 0.036	$0.144{\pm}0.033$
Bodyfat	227	14	7	$0.0019 {\pm} 0.0026$	$0.0019 {\pm} 0.0026$	$0.0019 {\pm} 0.0024$

Summary

Measuring Independence

- Covariance Operator
- Hilbert Space Methods
- A Test Statistic and its Analysis

Independent Component Analysis

- ICA Primer
- Examples

Feature Selection

- Problem Setting
- Algorithm
- Results

Looking for a job ... talk to me!

• Alex.Smola@nicta.com.au (http://www.nicta.com.au)

Positions

- PhD scholarships
- Postdoctoral positions, Senior researchers
- Long-term visitors (sabbaticals etc.)

More details on kernels

- http://sml.nicta.com.au
- http://www.kernel-machines.org
- http://www.learning-with-kernels.org
 Schölkopf and Smola: Learning with Kernels

