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0 Measuring Independence
@ Covariance Operator
@ Hilbert Space Methods
@ A Test Statistic and its Analysis
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Measuring Independence

Problem
@ Given {(x1,%1),..-,(Xm,Ym)} ~ Pr(x,y) determine
whether Pr(x, y) = Pr(x) Pr(y).
@ Measure degree of dependence.
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Measuring Independence

Problem
@ Given {(x1,%1),..-,(Xm,Ym)} ~ Pr(x,y) determine
whether Pr(x, y) = Pr(x) Pr(y).
@ Measure degree of dependence.
Applications
@ Independent component analysis
@ Dimensionality reduction and feature extraction
@ Statistical modeling
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Measuring Independence

Problem
@ Given {(x1,%1),..-,(Xm,Ym)} ~ Pr(x,y) determine
whether Pr(x, y) = Pr(x) Pr(y).
@ Measure degree of dependence.
Applications
@ Independent component analysis
@ Dimensionality reduction and feature extraction
@ Statistical modeling
Indirect Approach
@ Perform density estimate of Pr(x, y)
@ Check whether the estimate approximately factorizes
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Measuring Independence

Problem
@ Given {(x1,%1),..-,(Xm,Ym)} ~ Pr(x,y) determine
whether Pr(x, y) = Pr(x) Pr(y).
@ Measure degree of dependence.
Applications
@ Independent component analysis
@ Dimensionality reduction and feature extraction
@ Statistical modeling
Indirect Approach
@ Perform density estimate of Pr(x, y)
@ Check whether the estimate approximately factorizes
Direct Approach
@ Check properties of factorizing distributions
@ E.g. kurtosis, covariance operators, etc.
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Covariance Operator

Linear Case
For linear functions f(x) = w'x and g(y) = v'y the
covariance is given by

Cov{f(x).g(y)} = w'Cv
This is a bilinear operator on the space of linear functions.
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Covariance Operator

Linear Case
For linear functions f(x) = w'x and g(y) = v'y the
covariance is given by

Cov{f(x).g(y)} = w'Cv
This is a bilinear operator on the space of linear functions.

Nonlinear Case
Define C to be the operator with (f, g) — Cov {f, g}.

We only show linearity in f: Cov {af, g} = aCov {f, g}.
Moreover, for f + f’ the covariance is additive. ]
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Covariance Operator

Linear Case
For linear functions f(x) = w'x and g(y) = v'y the
covariance is given by

Cov{f(x),9(y)} =w'Cv

This is a bilinear operator on the space of linear functions.
Nonlinear Case
Define C to be the operator with (f, g) — Cov {f, g}.

C is a bilinear operator in f and g. \

We only show linearity in f: Cov {af, g} = aCov {f, g}.
Moreover, for f + f’ the covariance is additive. ]
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Independent random variables
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Dependent random variables
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Or are we just unlucky?
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Covariance operators

Criterion (Renyi, 1957)
Test for independence by checking whether C = 0.
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Covariance operators

Criterion (Renyi, 1957)
Test for independence by checking whether C = 0.
Reproducing Kernel Hilbert Space

@ Kernels k,/ on X,Y with associated RKHSs ¥, G.
@ Assume bounded k, / on domain.
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Covariance operators

Criterion (Renyi, 1957)
Test for independence by checking whether C = 0.
Reproducing Kernel Hilbert Space

@ Kernels k,/ on X,Y with associated RKHSs ¥, G.
@ Assume bounded k, / on domain.

Mean operator

(x, ) = Ex[f(x)] and (uy, g) = Ey[9(y)]
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Covariance operators

Criterion (Renyi, 1957)
Test for independence by checking whether C = 0.
Reproducing Kernel Hilbert Space

@ Kernels k,/ on X,Y with associated RKHSs ¥, G.
@ Assume bounded k, / on domain.

Mean operator

(x, ) = Ex[f(x)] and (uy, g) = Ey[9(y)]

Covariance operator
Define covariance operator C via bilinear form

f' Cyyg = Cov{f, g} = Ex, [f(x)g(y)] — Ex[f(x)] E, [g(y)]
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Hilbert Space Representation

Provided that k, | are universal kernels || Cy, || = 0 if and only if
X, y are independent.

Step 1: If x, y are dependent then there exist some
[0, 1]-bounded range f*, g* with Cov {f*, g*} = ¢ > 0.

Step 2: Since k, | are universal there exist ¢ approximation of
f*,g* in &, G such that covariance of approximation does not
vanish.

Step 3: Hence the covariance operator C,, is nonzero.
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A Test Statistic

Covariance operator
Cyy = Exy [k(x,)I(y, )] — Ex[k(x,-)]E, [I(y,-)]
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A Test Statistic

Covariance operator

Cry = By [k(x,)I(y, )] = Ex[k(x, )] Ey [I(y-)]

Operator Norm
Use the norm of C,, to test whether x and y are
independent. It also gives us a measure of dependence.

HSIC(Pr, . 5) = || Cyy [

where ||-|| denotes the Hilbert-Schmidt norm.
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A Test Statistic

Covariance operator

Cyy = Exy [k(x,)I(y, )] = Ex[k(x, )] E, [I(y, )]
Operator Norm

Use the norm of C,, to test whether x and y are
independent. It also gives us a measure of dependence.

HSIC(Pr, . 5) = || Cyy [

where ||-|| denotes the Hilbert-Schmidt norm.
Frobenius Norm
For matrices we can define

M| = ZMZ —trM™M

Hilbert-Schmidt norm is generallzatlon of Frobenlus norm.
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Computing ||C,y|°

Rank-one operators
For rank-one terms we have
If@gl*=(feg.feg)us=IIfl*lgl?

Joint expectation
By construction of C,, we exploit linearity and obtain

||ny||2 :<nya ny>HS
—{E,,Ev, — 2E,,E E, + E,E E,E,}

[(k(X7 )/(y7 ')7 k(X/> )/(y/7 ')>HS]
— {Ex,Ey, — 2E,,ExE, + E4E,E,E,}

[k(x, X1y, ¥')]

This is well-defined if k, | are bounded.
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Estimating ||CZ ||

Empirical criterion

1

where f(,'j = k(X,‘,Xj), L,'j = /(y,,yj) and H,'j = (S/j —m2.
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Estimating ||C2|

Empirical criterion

HSIC(Z, 7, 9) = SuKHLH

’
(m—1)

where f(,'j = k(X,’, Xj), L,'j = /(y,,yj) and H,'j = (5,]' —m2.

E2 [HSIC(Z, 7, 5)] = HSIC(Pr, 9, 9) + O(1/m)
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Estimating ||C2|

Empirical criterion

HSIC(Z, 7, 9) = SuKHLH

1
(m—1)
where f(,'j = k(X,’, Xj), L,'j = /(y,,yj) and H,'j = (5,]' —m2.

Theorem
E; [HSIC(Z,F,9)] = HSIC(Ii’yr, F,9)+ O(1/m)

| A\

Proof: Sketch only.

Expand tr KHLH into terms of pairs, triples and quadruples of
indices of non-repeated terms, which lead to the proper
expectations and bound the rest by O(m~1). O
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Uniform convergence bounds for ||C2 ||

Theorem (Recall Hoeffding’s theorem for U Statistics)
For averages over functions on r variables

, Xi.)

r

which are bounded by a < u < b we have

F;r{U —Ey[u] > t} <exp (_Z(ZZI__—m;)rZ-'>

In our statistic we have terms of 2, 3, and 4 random variables.
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Uniform convergence bounds for ||C2 ||

Corollary

Assume that k,| <. Then at least with probability 1 — §

log6/6 C
024m m

Bound each of the three terms separatly via Hoeffding’s
theorem. O

’HSIC(Z, F,5) — HSIC(Pr, 5, 9)’ <
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e Independent Component Analysis
@ |ICA Primer
@ Examples
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Blind Source Separation

Data
w = Ms, where all s; are mutually independent.

The Cocktail Party Problem

Mixing Matrix ?
2 P

A .
Observations
Sources S = {si; s2} w = {wi ; W2}
%
S2 L‘o > C W2

Task
Recover the sources S and mixing matrix M given W.
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Independent Component Analysis

Whitening
Rotate, center, and whiten data before separation. This is
always possible.
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Independent Component Analysis

Whitening
Rotate, center, and whiten data before separation. This is
always possible.
Optimization
@ We cannot recover scale of data anyway.
@ Need to find orthogonal matrix U such that Uw = s
leads to independent random variables.
@ Optimization on the Stiefel manifold.
@ Could do this by a Newton method.
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Independent Component Analysis

Whitening
Rotate, center, and whiten data before separation. This is
always possible.
Optimization
@ We cannot recover scale of data anyway.
@ Need to find orthogonal matrix U such that Uw = s
leads to independent random variables.
@ Optimization on the Stiefel manifold.
@ Could do this by a Newton method.
Important Trick
@ Kernel matrix could be huge.
@ Use reduced-rank representation. We get

tr HAAT)H(BB') = ||ATHB||2 instead of tr HKHL.
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ICA Experiments

n|m Rep. | FICA | Jade IMAX | RAD | CFIC | KCC | COg COl KGV KMIlg | KMII HSICg| HSICI
2 | 250 1000 | 105+ | 95+ | 444+ | 54+ |72+ |70+ |78+ |70+ |53+ |60+ |57+ |59+ |58+
0.4 0.4 0.9 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3

2 [ 1000 | 1000 | 6.0 & | 5.1 £ | 11.3+ | 24+ | 32+ |33+ |35+ [ 294+ |23+ |26+ |23+ |26+ |24+
0.3 0.2 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

4 | 1000 | 100 | 57+ |56 4+ | 133+ | 25+ |33+ [45+ |42+ |46+ |31+ |40+ |35+ |27+ |25+
0.4 0.4 1.1 0.1 0.2 0.4 0.3 0.6 0.6 0.7 0.7 0.1 0.2

4 | 4000 | 100 | 3.1+ (234 |59+ |13+ |15+ |24+ |19+ |16+ |14+ |14+ |12+ |13+ |12+
0.2 0.1 0.7 0.1 0.1 0.5 0.1 0.1 0.1 0.05 0.05 0.05 0.05
8 | 2000 | 50 414+ | 364 |93+ |18+ |24+ |48+ | 37£ |52+ |26+ |21%x |19+ |19+ | 1.8%
0.2 0.2 0.9 0.1 0.1 0.9 0.9 1.3 0.3 0.1 0.1 0.1 0.1

8 | 4000 | 50 324+ | 274 |64+ |13 |16+ |21+ |20£ |19+ |17+ |14%x | 13%£|14£|13%
0.2 0.1 0.9 0.05 0.1 0.2 0.1 0.1 0.2 0.1 0.05 0.05 0.05
16| 5000 | 25 294+ [ 314 |94+ |12+ | 1.7+ |37+ |24£|26£ | 1.7£|15% |15+ |13£|13%
0.1 0.3 1.1 0.05 0.1 0.6 0.1 0.2 0.1 0.1 0.1 0.05 0.05
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Outlier Robustness
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Automatic Regularization
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Mini Summary

Linear mixture of independent sources
@ Remove mean and whiten for preprocessing
@ Use HSIC as measure of dependence
@ Find best rotation to demix the data
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Mini Summary

Linear mixture of independent sources

@ Remove mean and whiten for preprocessing
@ Use HSIC as measure of dependence
@ Find best rotation to demix the data
Performance
@ HSIC is very robust to outliers
@ General purpose criterion
@ Best performing algorithm (Radical) is designed for
linear ICA, HSIC is a general purpose criterion
@ Low rank decomposition makes optimization feasible
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e Feature Selection

@ Problem Setting
@ Algorithm
@ Results

Alexander J. Smola: Hilbert Schmidt Independence Criterion
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Feature Selection

The Problem

@ Large number of features
@ Select a small subset of them
Basic Idea

@ Find features such that the distributions p(x|y = 1) and
p(x|y = —1) are as different as possible.
@ Use a two-sample test for that.

Important Tweak

We can find a similar criterion to measure dependence

between data and labels (by computing the Hilbert-Schmidt
norm of covariance operator).
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Recursive Feature Elimination

Algorithm
@ Start with full set of features
@ Adjust kernel width to pick up maximum discrepancy
@ Find feature which decreases dissimilarity the least
@ Remove this feature
@ Repeat

Applications

@ Binary classification (standard MMD criterion)
@ Multiclass
@ Regression
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Algorithm 1 Feature Selection via Backward Elimination
Input: The full set of features S
Output: An ordered set of features S*

1: ST— @

2: repeat

3:  0p « argmax, HSIC(o,S)

4: ¢« argmax; HISC(og,S\ {3}), i €S
55 S8\ {i}

6: ST S uU{i}

7: until § = &

Alexander J. Smola: Hilbert Schmidt Independence Criterion



Comparison to other feature selectors

Synthetic Data
Table 1: Classification error (%) after selecting features using BAHSIC and 6 other methods.
Method Fisher FSV Lo MI R2W2 RFE BAHSIC
WL-6 10.0£4.5  2.0+£2.0 00200 6.0x£3.1 0,000 0.0£00 0.0£0.0
WN-2 57.0£3.7 58.0£53 2.0L£13 18.0£29 54.0+6.5 2.0£1.3 L0£l0

Brain Computer Interface Data
Table 2: Classification errors (%) on BCI data after selecting a frequency range.

Subject aa al av aw ay
CSP(8-40Hz) 17.54+25 3.1+1.2 32.1425 73427 6.0+1.6
CSSP 149429 24£13 33.0+£27 54419 6.2+15

CSSSp 12.24+21 2.24+09 31.8+£2.8 63+1.8 12.7+2.0
BAHSIC 13.7+4.3 1.9+1.3 30.5+£33 6.1+38 9.0+6.0
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Frequency Band Selection
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Microarray Feature Selection

Goal
@ Obtain small subset of features for estimation
@ Reproducible feature selection

Results

Table 3: Comparison between SVM-RFE and BAHSIC for bioinformatics data. From top to bottom:

data set description, classification errors in (%), and feature stability.

Dataset Lymphoma Yeast Colon Berchuck
Dim 4026 79 2000 22283
Sample 42/11/9 121/35/27/14/11 40/22 3024
MC OVR MC OVR

SVM 32.4+6.9 32.4+6.9 53121 5.8%£1.8 17.6+5.1 43.3+6.9
RFE 12.864+3.30  0.00+0.00 30.36+2.39 6.76+£2.10 22.38+£6.05 30.00+7.57
BAHSIC  0.00£0.00 0.00+0.00 579 +1.99 4.81+1.59 15.714+5.27 19.33+6.30

RFE 0.77+0.09 0.46+0.28 0414031 0.39+0.32 0.38+0.11  0.57+0.28
BAHSIC 0.96+0.03 0.96+0.03 0.821+0.14 0.82+0.14 0.90+0.06  0.73+0.19

Table 4: Root mean square error (RMSE) of support vector regression with and without HSIC

Method Sample Dim Feature e-SVR RAND BAHSIC
Pyrim 55 27 5 0.1121+0.067 0.092+0.073 0.085+0.066
Triaz 186 60 2 0.147+0.027 0.157+0.036 0.144+0.033

Bodyfat 227 14 7 0.0019+0.0026  0.0019+0.0026  0.0019+0.0024
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@ Measuring Independence
@ Covariance Operator
@ Hilbert Space Methods
@ A Test Statistic and its Analysis

e Independent Component Analysis
@ ICA Primer
@ Examples

e Feature Selection
@ Problem Setting
@ Algorithm
@ Results
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Shameless Plugs

Looking for a job ... talk to me!
@ Alex.Smola@nicta.com.au (http://www.nicta.com.au)
Positions

@ PhD scholarships
@ Postdoctoral positions, Senior researchers
@ Long-term visitors (sabbaticals etc.)
More details on kernels
@ http://sml.nicta.com.au
@ http://www.kernel-machines.org
@ http://www.learning-with-kernels.org
Schélkopf and Smola: Learning with Kernels
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