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Conditional Models

Conditional Density

p(x |θ) = exp(〈φ(x), θ〉 − g(θ))

p(y |x , θ) = exp(〈φ(x , y), θ〉 − g(θ|x))

Log-partition function

g(θ|x) = log
∫

y
exp(〈φ(x , y), θ〉)dy

Sufficient Criterion
p(x , y |θ) is a member of the exponential family itself.

Key Idea
Avoid computing φ(x , y) directly, only evaluate inner products

k((x , y), (x ′, y ′)) := 〈φ(x , y), φ(x ′, y ′)〉
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Conditional Distributions

Maximum a Posteriori Estimation

− log p(θ|X ) =
m∑

i=1

−〈φ(xi), θ〉+ mg(θ) +
1

2σ2‖θ‖
2 + c

− log p(θ|X , Y ) =
m∑

i=1

−〈φ(xi , yi), θ〉+ g(θ|xi) +
1

2σ2‖θ‖
2 + c

Solving the Problem
The problem is strictly convex in θ.
Direct solution impossible if we cannot compute φ(x , y).
Solve convex problem in expansion coefficients.
Expand θ in a linear combination of φ(xi , y).
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Joint Feature Map
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Representer Theorem

Objective Function

− log p(θ|X , Y ) =
m∑

i=1

−〈φ(xi , yi), θ〉+ g(θ|xi) +
1

2σ2‖θ‖
2 + c

Decomposition
Decompose θ into θ = θ‖ + θ⊥ where

θ‖ ∈ span{φ(xi , y) where 1 ≤ i ≤ m and y ∈ Y}
Both g(θ|xi) and 〈φ(xi , yi), θ〉 are independent of θ⊥.

Theorem
− log p(θ|X , Y ) is minimized for θ⊥ = 0, hence θ = θ‖.

Corollary
If |Y| < ∞ we have a parametric optimization problem.
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Using It

Expansion

θ =
m∑

i=1

∑
y∈Y

αiyφ(xi , y)

Inner Product

〈φ(x , y), θ〉 =
m∑

i=1

∑
y∈Y

αiyk((x , y), (xi , y))

Norm

‖θ‖2 =
m∑

i,j=1

∑
y ,y ′∈Y

αiyαjy ′k((xi , y), (xj , y ′))

Log-partition function

g(θ|x) = log
∑
y∈Y

exp (〈φ(x , y), θ〉)
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Linear Kernel
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Laplace Kernel Covariance
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Gaussian Kernel

Alexander J. Smola: Applications of Exponential Families 10 / 53



Polynomial (Order 3)
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B3-Spline Kernel
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Sample from Gaussian RBF
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Sample from Gaussian RBF
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Sample from linear kernel
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Sample from linear kernel
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Sample from linear kernel
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Sample from linear kernel
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Sample from linear kernel
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Mini Summary

Choose a suitable sufficient statistic φ(x , y)

Conditionally multinomial distribution leads to Gaussian
Process multiclass classifier.
Conditionally Gaussian leads to Gaussian Process
regression. Note: we estimate mean and variance.
Conditionally Poisson distributions yield spatial Poisson
regression.

Solve the optimization problem
This is typically convex.

The bottom line
Instead of choosing k(x , x ′) choose k((x , y), (x ′, y ′)).
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Gaussian Process Classification

Sufficient Statistic
We pick φ(x , y) = φ(x)⊗ ey , that is

k((x , y), (x ′, y ′)) = k(x , x ′)δyy ′ where y , y ′ ∈ {1, . . . , n}

Kernel Expansion
By the representer theorem we get that

θ =
m∑

i=1

∑
y

αiyφ(xi , y)

Optimization Problem
Not too messy and convex.
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A Toy Example
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Noisy Data
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Mini Summary

Feature Map
Conditionally multinomial models y |x
Feature map is ey ⊗ φ(x)
Kernel k((x , y), (x ′, y ′)) = δy ,y ′k(x , x ′)
Could use different interaction between labels.

Optimization Problem
Convex problem
Solve in dual space by Newton’s method
Could solve in primal space if φ(x , y) can be computed
efficiently.

Caveat
True posterior is only approximated by mode of posterior.
Would need sampling methods for exact inference.
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Regression

Recall: Maximum a Posteriori Estimation

− log p(θ|X , Y ) =
m∑

i=1

−〈φ(xi , yi), θ〉+ g(θ|xi) +
1

2σ2‖θ‖
2 + c

Domain
Continuous domain of observations Y = R
We want to have a conditionally normal distribution y |x .
Log-partition function g(θ|x) easy to compute in closed
form as normal distribution.
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Standard Model

Key Idea
For fixed parameter θ we want to have a normal
distribution with fixed variance.
Exponential family model of y |x with c(x)y − 1

2σ2 y2 in
exponent.

Sufficient Statistic
Pick φ(x , y) = (yφ(x), y2), that is

k((x , y), (x ′, y ′)) = k(x , x ′)yy ′ + y2y ′2 where y , y ′ ∈ R

Traditionally the variance is fixed.
Inference Problem

After straightforward algebra we get standard GP regression
model.
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Training Data
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Mean ~k>(x)(K + σ21)−1y
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Variance k(x , x) + σ2− ~k>(x)(K + σ21)−1~k(x)
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Putting everything together . . .
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Another Example
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Heteroscedastic Regression

Key Idea
Make both linear and quadratic term in y |x dependent on x .

Sufficient Statistic
Pick φ(x , y) = (yφ1(x), y2φ2(x)), that is

k((x , y), (x ′, y ′)) = k1(x , x ′)yy ′+k2(x , x ′)y2y ′2 where y , y ′ ∈ R

We estimate mean and variance simultaneously.
Kernel Expansion

By the representer theorem (and more algebra) we get

θ =

(
m∑

i=1

αi1φ1(xi),
m∑

i=1

αi2φ2(xi)

)
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Heteroscedastic Regression

Optimization Problem

m∑
i=1

[
−1

4
[ m∑

j=1

α1jk1(xi , xj)
]>[ m∑

j=1

α2jk2(xi , xj)
]−1[ m∑

j=1

α1jk1(xi , xj)
]

−1
2

log det−2
[ m∑

j=1

α2jk2(xi , xj)
]
−

m∑
j=1

[
y>

i α1jk1(xi , xj) + (y>
j α2jyj)k2(xi , xj)

]]
+

1
2σ2

∑
i,j

α>
1iα1jk1(xi , xj) + tr

[
α2iα

>
2j

]
k2(xi , xj).

subject to 0 �
m∑

i=1

α2ik(xi , xj)
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Heteroscedastic Regression

Optimization Problem
The problem is convex
The log-determinant from the normalization of the
Gaussian distribution acts as a barrrier function.
We get a semidefinite program.
Because of the barrier function we can solve it by
Newton’s method.

Alexander J. Smola: Applications of Exponential Families 39 / 53



Heteroscedastic Regression
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Natural Parameters
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Mini Summary

Sufficient Statistics
Conditionally normal model explained if φ(y , x) has
linear and quadratic terms.
For homoscedastic model we only need to estimate the
linear term. Quadratic term is fixed.
Second order kernel in y , arbitrary kernel in x .

Optimization
Linear system is all we need for fixed variance
Semidefinite program for heteroscedastic estimation
Can be solved by Newton’s method, as the
log-determinant acts as barrier function.
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Graphical Models

Corollary
The conditional density p(y |x) can be written in terms of
potential functions defined on the maximal cliques in y.

Corollary
Featuremap φ(x) decomposes via φ(x) = (. . . , φc(xc), . . .).
Consequently we can write the kernel via

k(x , x ′) = 〈φ(x), φ(x ′)〉 =
∑

c

〈φc(xc), φc(x ′
c)〉 =

∑
c

kc(xc, x ′
c)
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Conditional Random Fields

Key Points
Cliques are (xt , yt), (xt , xt+1), and (yt , yt+1)
We can drop cliques in (xt , xt+1)

p(y |x , θ) = exp
(∑

t

〈φxy(xt , yt), θxy ,t〉+ 〈φyy(yt , yt+1), θyy ,t〉

+ 〈φxx(xt , xt+1), θxx ,t〉 − g(θ|x)
)
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Computational Issues

Key Points
Compute g(θ|x) via dynamic programming
Assume stationarity of the model, that is θc does not
depend on the position of the

Dynamic Programming

g(θ|x)

= log
∑

y1,...,yT

T∏
t=1

exp (〈φxy(xt , yt), θxy〉+ 〈φyy(yt , yt+1), θyy〉)︸ ︷︷ ︸
Mt (yt ,yt+1)

= log
∑

y1

∑
y2

M1(y1, y2)
∑

y3

M2(y2, y3) . . .
∑
yT

MT (yT−1, yT )

Efficient computation of g(θ|x), p(yt |x , θ) and p(yt , yt+1|x , θ).
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Forward Backward Algorithm

Key Idea
Store sum over all y1, . . . , yt−1 (forward pass) and over all
yt+1, . . . , yT as intermediate values
We get those values for all positions t in one sweep.
Extend this to message passing (when we have trees).
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Minimization

Objective Function

− log p(θ|X , Y ) =
m∑

i=1

−〈φ(xi , yi), θ〉+ g(θ|xi) +
1

2σ2‖θ‖
2 + c

∂θ − log p(θ|X , Y ) =
m∑

i=1

−φ(xi , yi) + E [φ(xi , yi)|xi ] +
1
σ2 θ

We only need E [φxy(xit , yit)|xi ] and E
[
φyy(yit , yi(t+1))|xi

]
.

Kernel Trick
Conditional expectations of Φ(xit , yit) cannot be
computed explicitly but inner products can.

〈φxy(x ′
t , y ′

t ), E [φxy(xt , yt)|x ] = E [k((x ′
t , y ′

t ), (xt , yt)|x ]

Only need marginals p(yt |x , θ) and p(yt , yt+1|x , θ), which
we get via dynamic programming.
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Subspace Representer Theorem

Representer Theorem
Solutions of the MAP problem are given by

θ ∈ span{φ(xi , y) for all y ∈ Y and 1 ≤ i ≤ n}

Big Problem
|Y| could be huge, e.g. for sequence annotation 2n.

Solution
Exploit decomposition of φ(x , y) into sufficient statistics
on cliques.
Restriction of Y to cliques is much smaller.

θc ∈ span{φc(xci , yc) for all yc ∈ Yc and 1 ≤ i ≤ n}

Rather than 2n we now get 2|c|.
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CRFs and HMMs

Conditional Random Field: maximize p(y |x , θ)

Hidden Markov Model: maximize p(x , y |θ)
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Equivalence Theorem

Theorem
CRFs and HMMs yield identical probability estimates for
p(y |x , θ), if the set of functions is equally expressive.

Proof.
Write out pCRF(y |x , θ) and pHMM(x , y |θ), and show that they
only differ in the normalization.
This disappears when computing pHMM(y |x , θ).

Consequence
Differential training for current HMM implementations.
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Mini Summary

Graphical Model Structure
Same decomposition as in unconditional models.
Only need to take cliques in y into account.

Kernel Expansion
Representer theorem is still intractable (exponential
number of terms).
Decompose along cliques (we have a representer
theorem per clique).
For some parts primal space optimization is more
efficient (cliques in yi alone).

Connection to Hidden Markov Models
HMMs optimize generative performance.
CRFs optimize a discriminative model.
Can re-optimize HMMs for discriminative performance.
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Summary

1 Conditional Models
Log-partition Function, Densities, and Expectations
Inner Products and Kernels
Examples of Kernels

2 Gaussian Process Classification
Feature map
Examples

3 Gaussian Process Regression
Homoscedastic Model
Heteroscedastic Model

4 Conditional Random Fields
Model Structure
Kernel Expansion
Connections to Hidden Markov Models
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