Applications of Exponential Families Thanks to Yasemin Altun, Thomas Hofmann, Vishy Vishwanathan

Alexander J. Smola

Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au

ICONIP 2006, Hong Kong, October 3

Outline

Conditional Models

- Log-partition Function, Densities, and Expectations
- Inner Products and Kernels
- Examples of Kernels
- 2 Gaussian Process Classification
 - Feature map
 - Examples
- 3 Gaussian Process Regression
 - Homoscedastic Model
 - Heteroscedastic Model
- 4 Conditional Random Fields
 - Model Structure
 - Kernel Expansion
 - Connections to Hidden Markov Models

Conditional Density

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}))$$
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}|\boldsymbol{x}))$$

Log-partition function

$$g(heta|x) = \log \int_y \exp(\langle \phi(x,y), heta
angle) dy$$

Sufficient Criterion

 $p(x, y|\theta)$ is a member of the exponential family itself. **Key Idea**

Avoid computing $\phi(x, y)$ directly, only evaluate inner products

 $k((x,y),(x',y')) := \langle \phi(x,y),\phi(x',y') \rangle$

Conditional Density

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}))$$
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}|\boldsymbol{x}))$$

Log-partition function

$$g(\theta|x) = \log \int_{y} \exp(\langle \phi(x, y), \theta \rangle) dy$$

Sufficient Criterion

 $p(x, y|\theta)$ is a member of the exponential family itself. **Key Idea**

Avoid computing $\phi(x, y)$ directly, only evaluate inner products

 $k((x,y),(x',y')) := \langle \phi(x,y), \phi(x',y') \rangle$

Conditional Density

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}))$$
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}|\boldsymbol{x}))$$

Log-partition function

$$g(\theta|\mathbf{x}) = \log \int_{\mathbf{y}} \exp(\langle \phi(\mathbf{x}, \mathbf{y}), \theta \rangle) d\mathbf{y}$$

Sufficient Criterion

 $p(x, y|\theta)$ is a member of the exponential family itself. Key Idea Avoid computing $\phi(x, y)$ directly, only evaluate inner products

 $k((x,y),(x',y')) := \langle \phi(x,y),\phi(x',y') \rangle$

Conditional Density

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}))$$
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}) = \exp(\langle \phi(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{\theta} \rangle - \boldsymbol{g}(\boldsymbol{\theta}|\boldsymbol{x}))$$

Log-partition function

$$g(\theta|\mathbf{x}) = \log \int_{\mathbf{y}} \exp(\langle \phi(\mathbf{x}, \mathbf{y}), \theta \rangle) d\mathbf{y}$$

Sufficient Criterion

 $p(x, y|\theta)$ is a member of the exponential family itself. Key Idea

Avoid computing $\phi(x, y)$ directly, only evaluate inner products

$$k((x,y),(x',y')) := \langle \phi(x,y), \phi(x',y') \rangle$$

Conditional Distributions

Maximum a Posteriori Estimation

$$-\log p(\theta|X) = \sum_{i=1}^{m} -\langle \phi(x_i), \theta \rangle + mg(\theta) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$
$$-\log p(\theta|X, Y) = \sum_{i=1}^{m} -\langle \phi(x_i, y_i), \theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Solving the Problem

- The problem is strictly convex in θ .
- Direct solution impossible if we cannot compute $\phi(x, y)$.
- Solve convex problem in expansion coefficients.
- Expand θ in a linear combination of $\phi(x_i, y)$.

Maximum a Posteriori Estimation

$$-\log p(\theta|X) = \sum_{i=1}^{m} -\langle \phi(x_i), \theta \rangle + mg(\theta) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$
$$-\log p(\theta|X, Y) = \sum_{i=1}^{m} -\langle \phi(x_i, y_i), \theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Solving the Problem

- The problem is strictly convex in θ .
- Direct solution impossible if we cannot compute $\phi(x, y)$.
- Solve convex problem in expansion coefficients.
- Expand θ in a linear combination of $\phi(x_i, y)$.

Joint Feature Map

Alexander J. Smola: Applications of Exponential Families

5 / 53

CT AUSTRALL

Objective Function

$$-\log p(\theta|\boldsymbol{X}, \boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i, \boldsymbol{y}_i), \theta \rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Decomposition

• Decompose θ into $\theta = \theta_{\parallel} + \theta_{\perp}$ where

 $\theta_{\parallel} \in \operatorname{span}\{\phi(x_i, y) \text{ where } 1 \leq i \leq m \text{ and } y \in \mathcal{Y}\}$

• Both $g(\theta|x_i)$ and $\langle \phi(x_i, y_i), \theta \rangle$ are independent of θ_{\perp} .

Theorem

 $-\log p(heta|X,Y)$ is minimized for $heta_{ot}=0,$ hence $heta= heta_{\|}.$

Corollary

If $|y| < \infty$ we have a parametric optimization problem

Objective Function

$$-\log p(\theta|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i,\boldsymbol{y}_i),\theta\rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Decomposition

• Decompose θ into $\theta = \theta_{\parallel} + \theta_{\perp}$ where

 $\theta_{\parallel} \in \operatorname{span}\{\phi(x_i, y) \text{ where } 1 \leq i \leq m \text{ and } y \in \mathfrak{Y}\}$

• Both $g(\theta|x_i)$ and $\langle \phi(x_i, y_i), \theta \rangle$ are independent of θ_{\perp} .

Theorem

 $-\log p(heta|X,Y)$ is minimized for $heta_{\perp}=$ 0, hence $heta= heta_{\parallel}.$

Corollary

If $|{\mathcal Y}| < \infty$ we have a parametric optimization problem.

Alexander J. Smola: Applications of Exponential Families

NATIONAL

Objective Function

$$-\log p(\theta|\boldsymbol{X}, \boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i, \boldsymbol{y}_i), \theta \rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Decomposition

• Decompose θ into $\theta = \theta_{\parallel} + \theta_{\perp}$ where

 $\theta_{\parallel} \in \operatorname{span}\{\phi(x_i, y) \text{ where } 1 \leq i \leq m \text{ and } y \in \mathfrak{Y}\}$

• Both $g(\theta|x_i)$ and $\langle \phi(x_i, y_i), \theta \rangle$ are independent of θ_{\perp} .

Theorem

$$-\log p(heta|X,Y)$$
 is minimized for $heta_{ot}=$ 0, hence $heta= heta_{\|}.$

Corollary

If $|\mathcal{Y}| < \infty$ we have a parametric optimization problem

Objective Function

$$-\log p(\theta|\boldsymbol{X}, \boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i, \boldsymbol{y}_i), \theta \rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Decomposition

• Decompose θ into $\theta = \theta_{\parallel} + \theta_{\perp}$ where

 $\theta_{\parallel} \in \operatorname{span}\{\phi(x_i, y) \text{ where } 1 \leq i \leq m \text{ and } y \in \mathfrak{Y}\}$

• Both $g(\theta|x_i)$ and $\langle \phi(x_i, y_i), \theta \rangle$ are independent of θ_{\perp} .

Theorem

$$-\log p(heta|X,Y)$$
 is minimized for $heta_{ot}=$ 0, hence $heta= heta_{\|}.$

Corollary

If $|\mathcal{Y}| < \infty$ we have a parametric optimization problem.

Expansion

 $\theta = \sum_{i}^{m} \sum \alpha_{iy} \phi(\mathbf{x}_i, \mathbf{y})$ i=1 $y \in \mathcal{Y}$

Inner Product

$$\langle \phi(\mathbf{x}, \mathbf{y}), \theta \rangle = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} k((\mathbf{x}, \mathbf{y}), (\mathbf{x}_i, \mathbf{y}))$$

Norm

$$\|\theta\|^2 = \sum_{i,j=1}^m \sum_{y,y' \in \mathcal{Y}} \alpha_{iy} \alpha_{jy'} k((x_i, y), (x_j, y'))$$

Log-partition function

$$g(\theta|x) = \log \sum_{y \in \mathcal{Y}} \exp\left(\langle \phi(x, y), \theta \rangle\right)$$

Expansion

$$\theta = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} \phi(\mathbf{x}_i, \mathbf{y})$$

Inner Product

$$\langle \phi(\mathbf{x}, \mathbf{y}), \theta \rangle = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} \mathbf{k}((\mathbf{x}, \mathbf{y}), (\mathbf{x}_i, \mathbf{y}))$$

Norm

$$\|\theta\|^2 = \sum_{i,j=1}^m \sum_{y,y' \in \mathcal{Y}} \alpha_{iy} \alpha_{jy'} k((x_i, y), (x_j, y'))$$

Log-partition function

$$g(\theta|x) = \log \sum_{y \in \mathcal{Y}} \exp\left(\langle \phi(x, y), \theta \rangle\right)$$

Expansion

$$\theta = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} \phi(\mathbf{x}_i, \mathbf{y})$$

Inner Product

$$\langle \phi(\mathbf{x}, \mathbf{y}), \theta \rangle = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} k((\mathbf{x}, \mathbf{y}), (\mathbf{x}_i, \mathbf{y}))$$

Norm

$$\|\theta\|^2 = \sum_{i,j=1}^m \sum_{\mathbf{y},\mathbf{y}'\in\mathfrak{Y}} \alpha_{i\mathbf{y}}\alpha_{j\mathbf{y}'} k((\mathbf{x}_i,\mathbf{y}),(\mathbf{x}_j,\mathbf{y}'))$$

Log-partition function

$$g(\theta|x) = \log \sum_{y \in \Psi} \exp\left(\langle \phi(x, y), \theta \rangle\right)$$

Expansion

$$\theta = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} \phi(\mathbf{x}_i, \mathbf{y})$$

Inner Product

$$\langle \phi(\mathbf{x}, \mathbf{y}), \theta \rangle = \sum_{i=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} \alpha_{i\mathbf{y}} k((\mathbf{x}, \mathbf{y}), (\mathbf{x}_i, \mathbf{y}))$$

Norm

$$\|\theta\|^2 = \sum_{i,j=1}^m \sum_{\mathbf{y},\mathbf{y}' \in \mathfrak{Y}} \alpha_{i\mathbf{y}} \alpha_{j\mathbf{y}'} k((\mathbf{x}_i, \mathbf{y}), (\mathbf{x}_j, \mathbf{y}'))$$

Log-partition function

$$g(heta|x) = \log \sum_{y \in lay } \exp \left(\langle \phi(x,y), heta
angle
ight)$$

NATIONAL ICT AUSTRALIA

Linear Kernel

Laplace Kernel Covariance

Gaussian Kernel

Alexander J. Smola: Applications of Exponential Families

ICT AUSTRALIA

Polynomial (Order 3)

B₃-Spline Kernel

Alexander J. Smola: Applications of Exponential Families

13 / 53

Alexander J. Smola: Applications of Exponential Families

NATIONAL ICT AUSTRALIA

Alexander J. Smola: Applications of Exponential Families

ICT AUSTRALIA

Alexander J. Smola: Applications of Exponential Families

ICT AUSTRALIA

Alexander J. Smola: Applications of Exponential Families

18 / 53

Alexander J. Smola: Applications of Exponential Families

NATIONAL ICT AUSTRALIA

Alexander J. Smola: Applications of Exponential Families

21 / 53

NATIONAL ICT AUSTRALIA

Choose a suitable sufficient statistic $\phi(x, y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass classifier.
- Conditionally Gaussian leads to Gaussian Process regression. **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yield spatial Poisson regression.

Solve the optimization problem

This is typically convex.

The bottom line

Choose a suitable sufficient statistic $\phi(x, y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass classifier.
- Conditionally Gaussian leads to Gaussian Process regression. **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yield spatial Poisson regression.

Solve the optimization problem

This is typically convex.

The bottom line

Choose a suitable sufficient statistic $\phi(x, y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass classifier.
- Conditionally Gaussian leads to Gaussian Process regression. **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yield spatial Poisson regression.
- Solve the optimization problem

This is typically convex.

The bottom line

Choose a suitable sufficient statistic $\phi(x, y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass classifier.
- Conditionally Gaussian leads to Gaussian Process regression. **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yield spatial Poisson regression.

Solve the optimization problem

This is typically convex.

The bottom line

Mini Summary

Choose a suitable sufficient statistic $\phi(x, y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass classifier.
- Conditionally Gaussian leads to Gaussian Process regression. **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yield spatial Poisson regression.

23 / 53

Solve the optimization problem

This is typically convex.

The bottom line

Instead of choosing k(x, x') choose k((x, y), (x', y')).

Mini Summary

Choose a suitable sufficient statistic $\phi(x, y)$

- Conditionally multinomial distribution leads to Gaussian Process multiclass classifier.
- Conditionally Gaussian leads to Gaussian Process regression. **Note:** we estimate mean and variance.
- Conditionally Poisson distributions yield spatial Poisson regression.

Solve the optimization problem

This is typically convex.

The bottom line

Instead of choosing k(x, x') choose k((x, y), (x', y')).

Outline

Conditional Models

- Log-partition Function, Densities, and Expectations
- Inner Products and Kernels
- Examples of Kernels

Gaussian Process Classification

- Feature map
- Examples
- 3 Gaussian Process Regression
 - Homoscedastic Model
 - Heteroscedastic Model
- 4 Conditional Random Fields
 - Model Structure
 - Kernel Expansion
 - Connections to Hidden Markov Models

Sufficient Statistic

We pick $\phi(x, y) = \phi(x) \otimes e_y$, that is

 $k((x, y), (x', y')) = k(x, x')\delta_{yy'}$ where $y, y' \in \{1, \dots, n\}$

Kernel Expansion

By the representer theorem we get that

$$\theta = \sum_{i=1}^{m} \sum_{y} \alpha_{iy} \phi(x_i, y)$$

Optimization Problem Not too messy and conv

Sufficient Statistic

We pick $\phi(x, y) = \phi(x) \otimes e_y$, that is

 $k((x, y), (x', y')) = k(x, x')\delta_{yy'}$ where $y, y' \in \{1, ..., n\}$

Kernel Expansion

By the representer theorem we get that

$$\theta = \sum_{i=1}^{m} \sum_{y} \alpha_{iy} \phi(\mathbf{x}_i, \mathbf{y})$$

Optimization Problem

Sufficient Statistic

We pick $\phi(x, y) = \phi(x) \otimes e_y$, that is

 $k((x, y), (x', y')) = k(x, x')\delta_{yy'}$ where $y, y' \in \{1, ..., n\}$

Kernel Expansion

By the representer theorem we get that

$$\theta = \sum_{i=1}^{m} \sum_{y} \alpha_{iy} \phi(\mathbf{x}_i, \mathbf{y})$$

Optimization Problem

Not too messy and convex.

A Toy Example

Alexander J. Smola: Applications of Exponential Families

26 / 53

Noisy Data

Alexander J. Smola: Applications of Exponential Families

27 / 53

Mini Summary

Feature Map

- Conditionally multinomial models y|x
- Feature map is $e_y \otimes \phi(x)$
- Kernel $k((x, y), (x', y')) = \delta_{y,y'}k(x, x')$
- Could use different interaction between labels.

Optimization Problem

- Convex problem
- Solve in dual space by Newton's method
- Could solve in primal space if \(\phi(x, y)\) can be computed efficiently.

Caveat

- True posterior is only approximated by mode of posterior.
- Would need sampling methods for exact inference.

Outline

- Conditional Models
 - Log-partition Function, Densities, and Expectations
 - Inner Products and Kernels
 - Examples of Kernels
- 2 Gaussian Process Classification
 - Feature map
 - Examples

3 Gaussian Process Regression

- Homoscedastic Model
- Heteroscedastic Model
- 4 Conditional Random Fields
 - Model Structure
 - Kernel Expansion
 - Connections to Hidden Markov Models

$$-\log p(\theta|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i,\boldsymbol{y}_i),\theta\rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

- Domain
 - Continuous domain of observations $\mathcal{Y} = \mathbb{R}$
 - We want to have a conditionally normal distribution y |x.
 - Log-partition function g(θ|x) easy to compute in closed form as normal distribution.

$$-\log p(\theta|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i,\boldsymbol{y}_i),\theta\rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

- $\bullet\,$ Continuous domain of observations ${\mathbb Y}={\mathbb R}$
- We want to have a conditionally normal distribution y|x.
- Log-partition function g(θ|x) easy to compute in closed form as normal distribution.

$$-\log p(\theta|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i,\boldsymbol{y}_i),\theta\rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

- $\bullet\,$ Continuous domain of observations ${\mathfrak Y}={\mathbb R}$
- We want to have a conditionally normal distribution y|x.
- Log-partition function g(θ|x) easy to compute in closed form as normal distribution.

$$-\log p(\theta|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i,\boldsymbol{y}_i),\theta\rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

- $\bullet\,$ Continuous domain of observations ${\mathfrak Y}={\mathbb R}$
- We want to have a conditionally normal distribution y|x.
- Log-partition function g(θ|x) easy to compute in closed form as normal distribution.

$$-\log p(\theta|\boldsymbol{X},\boldsymbol{Y}) = \sum_{i=1}^{m} -\langle \phi(\boldsymbol{x}_i,\boldsymbol{y}_i),\theta\rangle + \boldsymbol{g}(\theta|\boldsymbol{x}_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

- $\bullet\,$ Continuous domain of observations ${\mathfrak Y}={\mathbb R}$
- We want to have a conditionally normal distribution y|x.
- Log-partition function g(θ|x) easy to compute in closed form as normal distribution.

- For fixed parameter θ we want to have a normal distribution with fixed variance.
- Exponential family model of y|x with $c(x)y \frac{1}{2\sigma^2}y^2$ in exponent.

Sufficient Statistic

Pick $\phi(x, y) = (y\phi(x), y^2)$, that is

 $k((x,y),(x',y')) = k(x,x')yy' + y^2{y'}^2$ where $y,y' \in \mathbb{R}$

Traditionally the variance is fixed.

Inference Problem

After straightforward algebra we get standard GP regression model.

- For fixed parameter θ we want to have a normal distribution with fixed variance.
- Exponential family model of y|x with $c(x)y \frac{1}{2\sigma^2}y^2$ in exponent.

Sufficient Statistic

Pick
$$\phi(x, y) = (y\phi(x), y^2)$$
, that is

 $k((x, y), (x', y')) = k(x, x')yy' + y^2{y'}^2$ where $y, y' \in \mathbb{R}$

Traditionally the variance is fixed.

Inference Problem

After straightforward algebra we get standard GP regression model.

- For fixed parameter θ we want to have a normal distribution with fixed variance.
- Exponential family model of y|x with $c(x)y \frac{1}{2\sigma^2}y^2$ in exponent.

Sufficient Statistic

Pick
$$\phi(x, y) = (y\phi(x), y^2)$$
, that is

 $k((x, y), (x', y')) = k(x, x')yy' + y^2y'^2$ where $y, y' \in \mathbb{R}$

Traditionally the variance is fixed.

Inference Problem

After straightforward algebra we get standard GP regression model.

Training Data

Alexander J. Smola: Applications of Exponential Families

NATIONAL ICT AUSTRALIA

Mean $\vec{k}^{\top}(x)(K + \sigma^2 \mathbf{1})^{-1}y$

Variance
$$k(x, x) + \sigma^2 - \vec{k}^\top (x) (K + \sigma^2 \mathbf{1})^{-1} \vec{k}(x)$$

Putting everything together ...

Another Example

Heteroscedastic Regression

Key Idea

Make both linear and quadratic term in y|x dependent on x.

Sufficient Statistic

Pick $\phi(x, y) = (y\phi_1(x), y^2\phi_2(x))$, that is

 $k((x, y), (x', y')) = k_1(x, x')yy' + k_2(x, x')y^2y'^2$ where $y, y' \in \mathbb{R}$

We estimate mean and variance **simultaneously**.

Kernel Expansion

By the representer theorem (and more algebra) we get

$$\theta = \left(\sum_{i=1}^{m} \alpha_{i1}\phi_1(x_i), \sum_{i=1}^{m} \alpha_{i2}\phi_2(x_i)\right)$$

Make both linear and quadratic term in y|x dependent on x.

Sufficient Statistic

Pick $\phi(x, y) = (y\phi_1(x), y^2\phi_2(x))$, that is

 $k((x,y),(x',y'))=k_1(x,x')yy'+k_2(x,x')y^2y'^2$ where $y,y'\in\mathbb{R}$

We estimate mean and variance **simultaneously**.

Kernel Expansion

By the representer theorem (and more algebra) we get

$$\theta = \left(\sum_{i=1}^{m} \alpha_{i1}\phi_1(x_i), \sum_{i=1}^{m} \alpha_{i2}\phi_2(x_i)\right)$$

Make both linear and quadratic term in y|x dependent on x.

Sufficient Statistic

Pick $\phi(x, y) = (y\phi_1(x), y^2\phi_2(x))$, that is

 $k((x,y),(x',y'))=k_1(x,x')yy'+k_2(x,x')y^2y'^2$ where $y,y'\in\mathbb{R}$

We estimate mean and variance **simultaneously**.

Kernel Expansion

By the representer theorem (and more algebra) we get

$$\theta = \left(\sum_{i=1}^{m} \alpha_{i1}\phi_1(\mathbf{x}_i), \sum_{i=1}^{m} \alpha_{i2}\phi_2(\mathbf{x}_i)\right)$$

Heteroscedastic Regression

Optimization Problem

$$\sum_{i=1}^{m} \left[-\frac{1}{4} \left[\sum_{j=1}^{m} \alpha_{1j} k_1(x_i, x_j) \right]^\top \left[\sum_{j=1}^{m} \alpha_{2j} k_2(x_i, x_j) \right]^{-1} \left[\sum_{j=1}^{m} \alpha_{1j} k_1(x_i, x_j) \right] \right]$$
$$-\frac{1}{2} \log \det -2 \left[\sum_{j=1}^{m} \alpha_{2j} k_2(x_i, x_j) \right] - \sum_{j=1}^{m} \left[y_i^\top \alpha_{1j} k_1(x_i, x_j) + (y_j^\top \alpha_{2j} y_j) k_j \right]$$
$$+ \frac{1}{2\sigma^2} \sum_{i,j} \alpha_{1i}^\top \alpha_{1j} k_1(x_i, x_j) + \operatorname{tr} \left[\alpha_{2i} \alpha_{2j}^\top \right] k_2(x_i, x_j).$$
subject to $0 \succ \sum_{j=1}^{m} \alpha_{2j} k(x_i, x_j)$

Optimization Problem

- The problem is convex
- The log-determinant from the normalization of the Gaussian distribution acts as a **barrrier function**.
- We get a semidefinite program.
- Because of the barrier function we can solve it by Newton's method.

Heteroscedastic Regression

regression estimation and training data

Natural Parameters

 θ 1 estimation

ICT AUSTRALL

Mini Summary

Sufficient Statistics

- Conditionally normal model explained if φ(y, x) has linear and quadratic terms.
- For homoscedastic model we only need to estimate the linear term. Quadratic term is fixed.
- Second order kernel in y, arbitrary kernel in x.

Optimization

- Linear system is all we need for fixed variance
- Semidefinite program for heteroscedastic estimation
- Can be solved by Newton's method, as the log-determinant acts as barrier function.

Outline

- 1) Conditional Models
 - Log-partition Function, Densities, and Expectations
 - Inner Products and Kernels
 - Examples of Kernels
- 2 Gaussian Process Classification
 - Feature map
 - Examples
- 3 Gaussian Process Regression
 - Homoscedastic Model
 - Heteroscedastic Model

Conditional Random Fields

- Model Structure
- Kernel Expansion
- Connections to Hidden Markov Models

Graphical Models

Corollary

The conditional density p(y|x) can be written in terms of potential functions defined on the maximal cliques in y.

Corollary

Featuremap $\phi(x)$ decomposes via $\phi(x) = (\dots, \phi_c(x_c), \dots)$. Consequently we can write the kernel via

 $k(x,x')=\langle \phi(x),\phi(x')
angle=\sum\langle \phi_c(x_c),\phi_c(x_c')
angle=$

Graphical Models

Corollary

The conditional density p(y|x) can be written in terms of potential functions defined on the maximal cliques in *y*.

Corollary

Featuremap $\phi(x)$ decomposes via $\phi(x) = (\dots, \phi_c(x_c), \dots)$. Consequently we can write the kernel via

 $\kappa(\mathbf{x},\mathbf{x}) = \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle = \sum \langle \phi_c(\mathbf{x}_c), \phi_c(\mathbf{x}_c) \rangle = \sum \kappa$

Graphical Models

Corollary

The conditional density p(y|x) can be written in terms of potential functions defined on the maximal cliques in *y*.

Corollary

Featuremap $\phi(x)$ decomposes via $\phi(x) = (\dots, \phi_c(x_c), \dots)$. Consequently we can write the kernel via

$$k(x, x') = \langle \phi(x), \phi(x') \rangle = \sum_{c} \langle \phi_c(x_c), \phi_c(x'_c) \rangle = \sum_{c} k_c(x_c, x'_c)$$

Conditional Random Fields

Key Points

- Cliques are $(x_t, y_t), (x_t, x_{t+1})$, and (y_t, y_{t+1})
- We can drop cliques in (x_t, x_{t+1})

$$p(y|x,\theta) = \exp\left(\sum_{t} \langle \phi_{xy}(x_t, y_t), \theta_{xy,t} \rangle + \langle \phi_{yy}(y_t, y_{t+1}), \theta_{yy,t} \rangle + \langle \phi_{xx}(x_t, x_{t+1}), \theta_{xx,t} \rangle - g(\theta|x) \right)$$

Conditional Random Fields

Key Points

- Cliques are $(x_t, y_t), (x_t, x_{t+1})$, and (y_t, y_{t+1})
- We can drop cliques in (x_t, x_{t+1})

$$\begin{split} \boldsymbol{\rho}(\boldsymbol{y}|\boldsymbol{x},\theta) &= \exp\Big(\sum_{t} \langle \phi_{xy}(\boldsymbol{x}_{t},\boldsymbol{y}_{t}), \theta_{xy,t} \rangle + \langle \phi_{yy}(\boldsymbol{y}_{t},\boldsymbol{y}_{t+1}), \theta_{yy,t} \rangle \\ &+ \langle \phi_{xx}(\boldsymbol{x}_{t},\boldsymbol{x}_{t+1}), \theta_{xx,t} \rangle - \boldsymbol{g}(\theta|\boldsymbol{x}) \Big) \end{split}$$

Computational Issues

Key Points

- Compute $g(\theta|x)$ via dynamic programming
- Assume stationarity of the model, that is θ_c does not depend on the position of the

Dynamic Programming

$$g(\theta|x) = \log \sum_{y_1,...,y_T} \prod_{t=1}^T \underbrace{\exp\left(\langle \phi_{xy}(x_t, y_t), \theta_{xy} \rangle + \langle \phi_{yy}(y_t, y_{t+1}), \theta_{yy} \rangle\right)}_{M_t(y_t, y_{t+1})} = \log \sum_{y_1} \sum_{y_2} M_1(y_1, y_2) \sum_{y_3} M_2(y_2, y_3) \dots \sum_{y_T} M_T(y_{T-1}, y_T)$$

Efficient computation of $g(\theta|x)$, $p(y_t|x, \theta)$ and $p(y_t, y_{t+1}|x, \theta)$.

Computational Issues

Key Points

Ff

- Compute $g(\theta|x)$ via dynamic programming
- Assume stationarity of the model, that is θ_c does not depend on the position of the

Dynamic Programming

$$g(\theta|x)$$

$$= \log \sum_{y_1, \dots, y_T} \prod_{t=1}^T \underbrace{\exp\left(\langle \phi_{xy}(x_t, y_t), \theta_{xy} \rangle + \langle \phi_{yy}(y_t, y_{t+1}), \theta_{yy} \rangle\right)}_{M_t(y_t, y_{t+1})}$$

$$= \log \sum_{y_1} \sum_{y_2} M_1(y_1, y_2) \sum_{y_3} M_2(y_2, y_3) \dots \sum_{y_T} M_T(y_{T-1}, y_T)$$
Ifficient computation of $g(\theta|x), p(y_t|x, \theta)$ and $p(y_t, y_{t+1}|x, \theta)$.

Forward Backward Algorithm

Key Idea

- Store sum over all y_1, \ldots, y_{t-1} (forward pass) and over all y_{t+1}, \ldots, y_T as intermediate values
- We get those values for all positions *t* in one sweep.
- Extend this to message passing (when we have trees).

Forward Backward Algorithm

Key Idea

- Store sum over all y_1, \ldots, y_{t-1} (forward pass) and over all y_{t+1}, \ldots, y_T as intermediate values
- We get those values for all positions *t* in one sweep.
- Extend this to message passing (when we have trees).

Minimization

Objective Function

$$-\log p(\theta|X, Y) = \sum_{i=1}^{m} -\langle \phi(x_i, y_i), \theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$
$$\partial_{\theta} - \log p(\theta|X, Y) = \sum_{i=1}^{m} -\phi(x_i, y_i) + \mathbf{E} \left[\phi(x_i, y_i)|x_i\right] + \frac{1}{\sigma^2} \theta$$

We only need $\mathbf{E}[\phi_{xy}(x_{it}, y_{it})|x_i]$ and $\mathbf{E}[\phi_{yy}(y_{it}, y_{i(t+1)})|x_i]$.

 Conditional expectations of Φ(x_{it}, y_{it}) cannot be computed explicitly **but** inner products can.

 $\langle \phi_{xy}(x'_t, y'_t), \mathsf{E}\left[\phi_{xy}(x_t, y_t)|x
ight] = \mathsf{E}\left[k((x'_t, y'_t), (x_t, y_t)|x
ight]$

• Only need marginals $p(y_t|x, \theta)$ and $p(y_t, y_{t+1}|x, \theta)$, which we get via dynamic programming.

Minimization

Objective Function

1

$$-\log p(\theta|X, Y) = \sum_{i=1}^{m} -\langle \phi(x_i, y_i), \theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$
$$\partial_{\theta} - \log p(\theta|X, Y) = \sum_{i=1}^{m} -\phi(x_i, y_i) + \mathbf{E} \left[\phi(x_i, y_i)|x_i\right] + \frac{1}{\sigma^2} \theta$$

We only need $\mathbf{E}[\phi_{xy}(x_{it}, y_{it})|x_i]$ and $\mathbf{E}[\phi_{yy}(y_{it}, y_{i(t+1)})|x_i]$. Kernel Trick

 Conditional expectations of Φ(x_{it}, y_{it}) cannot be computed explicitly but inner products can.

 $\langle \phi_{xy}(x'_t, y'_t), \mathsf{E}\left[\phi_{xy}(x_t, y_t)|x
ight] = \mathsf{E}\left[k((x'_t, y'_t), (x_t, y_t)|x
ight]$

Only need marginals *p*(*y*_t|*x*, θ) and *p*(*y*_t, *y*_{t+1}|*x*, θ), which we get via dynamic programming.

Subspace Representer Theorem

Representer Theorem

Solutions of the MAP problem are given by

 $\theta \in \operatorname{span}\{\phi(x_i, y) \text{ for all } y \in \mathcal{Y} \text{ and } 1 \leq i \leq n\}$

Big Problem

 $\mathcal{Y}|$ could be huge, e.g. for sequence annotation 2^n .

Solution

- Exploit decomposition of \(\phi(x, y)\) into sufficient statistics on cliques.
- Restriction of \mathcal{Y} to cliques is much smaller.

 $\theta_c \in \operatorname{span}\{\phi_c(x_{ci}, y_c) \text{ for all } y_c \in \mathcal{Y}_c \text{ and } 1 \le i \le n\}$

Rather than 2^n we now get $2^{|c|}$.

Representer Theorem

Solutions of the MAP problem are given by

 $\theta \in \operatorname{span}\{\phi(x_i, y) \text{ for all } y \in \mathcal{Y} \text{ and } 1 \leq i \leq n\}$

Big Problem

 $|\mathcal{Y}|$ could be huge, e.g. for sequence annotation 2^n .

- Exploit decomposition of \(\phi(x, y)\) into sufficient statistics on cliques.
- Restriction of \mathcal{Y} to cliques is much smaller.

 $\theta_c \in \operatorname{span}\{\phi_c(x_{ci}, y_c) \text{ for all } y_c \in \mathcal{Y}_c \text{ and } 1 \le i \le n\}$

Rather than 2^n we now get $2^{|c|}$.

Representer Theorem

Solutions of the MAP problem are given by

 $\theta \in \operatorname{span}\{\phi(x_i, y) \text{ for all } y \in \mathcal{Y} \text{ and } 1 \leq i \leq n\}$

Big Problem

 $|\mathcal{Y}|$ could be huge, e.g. for sequence annotation 2^n .

Solution

- Exploit decomposition of \(\phi(x, y)\) into sufficient statistics on cliques.
- Restriction of \mathcal{Y} to cliques is much smaller.

 $\theta_c \in \operatorname{span}\{\phi_c(x_{ci}, y_c) \text{ for all } y_c \in \mathcal{Y}_c \text{ and } 1 \leq i \leq n\}$

Rather than 2^n we now get $2^{|c|}$.

CRFs and HMMs

2

Conditional Random Field: maximize $p(y|x, \theta)$ y y y y y y y y y

lidden Markov Model: maximize $p(x, y|\theta)$

Alexander J. Smola: Applications of Exponential Families

CRFs and HMMs

Alexander J. Smola: Applications of Exponential Families

50 / 53

Equivalence Theorem

Theorem

CRFs and *HMMs* yield identical probability estimates for $p(y|x, \theta)$, if the set of functions is equally expressive.

Proof.

- Write out $p_{CRF}(y|x,\theta)$ and $p_{HMM}(x, y|\theta)$, and show that they only differ in the normalization.
- This disappears when computing $p_{\text{HMM}}(y|x,\theta)$.

onsequence Differential training for current HMM implementations.

Theorem

CRFs and *HMMs* yield identical probability estimates for $p(y|x, \theta)$, if the set of functions is equally expressive.

Proof.

- Write out $p_{CRF}(y|x,\theta)$ and $p_{HMM}(x, y|\theta)$, and show that they only differ in the normalization.
- This disappears when computing $p_{\text{HMM}}(y|x,\theta)$.

Consequence Differential training for current HMM implementations.

Theorem

CRFs and *HMMs* yield identical probability estimates for $p(y|x, \theta)$, if the set of functions is equally expressive.

Proof.

- Write out $p_{CRF}(y|x,\theta)$ and $p_{HMM}(x, y|\theta)$, and show that they only differ in the normalization.
- This disappears when computing $p_{\text{HMM}}(y|x,\theta)$.

Consequence

Differential training for current HMM implementations.

Mini Summary

Graphical Model Structure

- Same decomposition as in unconditional models.
- Only need to take cliques in y into account.

Kernel Expansion

- Representer theorem is still intractable (exponential number of terms).
- Decompose along cliques (we have a representer theorem per clique).
- For some parts primal space optimization is more efficient (cliques in *y_i* alone).

Connection to Hidden Markov Models

- HMMs optimize generative performance.
- CRFs optimize a discriminative model.
- Can re-optimize HMMs for discriminative performance.

Summary

Conditional Models

- Log-partition Function, Densities, and Expectations
- Inner Products and Kernels
- Examples of Kernels

2 Gaussian Process Classification

- Feature map
- Examples

Gaussian Process Regression

- Homoscedastic Model
- Heteroscedastic Model

Onditional Random Fields

- Model Structure
- Kernel Expansion
- Connections to Hidden Markov Models

