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The Exponential Family

Definition
A family of probability distributions which satisfy

p(x ; θ) = exp(〈φ(x), θ〉 − g(θ))

Details
φ(x) is called the sufficient statistic of x .
X is the domain out of which x is drawn (x ∈ X).
g(θ) is the log-partition function and it ensures that the
distribution integrates out to 1.

g(θ) = log
∫

X

exp(〈φ(x), θ〉)dx

Sometimes we need to specify a measure ν(x) on X.
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Example: Binomial Distribution

Tossing coins
With probability p we have heads and with probability 1− p
we see tails. So we have

p(x) = px(1− p)1−x where x ∈ {0,1} =: X

Massaging the math

p(x) = exp log p(x)

= exp (x log p + (1− x) log(1− p))

= exp
(
〈(x ,1− x)︸ ︷︷ ︸

φ(x)

, (log p, log(1− p))︸ ︷︷ ︸
θ

〉
)

Normalization
Once we relax the restriction on θ ∈ R2 we need

g(θ) = log
(
eθ1 + eθ2

)
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Example: Binomial Distribution
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Example: Normal Distribution

Engineer’s favorite

p(x) = 1√
2πσ2 exp

(
− 1

2σ2 (x − µ)2) where x ∈ R =: X

Massaging the math

p(x) = exp
(
− 1

2σ2 x2 +
µ

σ2 x − µ2

2σ2 −
1
2

log(2πσ2)

)
= exp

(
〈(x , x2)︸ ︷︷ ︸

φ(x)

, θ〉 −
(
µ2

2σ2 +
1
2

log(2πσ2)

)
︸ ︷︷ ︸

g(θ)

)

We need to solve (µ, σ2) for θ. Tedious algebra yields
θ2 := −1

2σ
−2 and θ1 := µσ−2. We have

g(θ) = −1
4
θ2

1θ
−1
2 +

1
2

log 2π − 1
2

log−2θ2
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Example: Normal Distribution
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Example: Multinomial Distribution

Many discrete events
Assume that we have disjoint events [1..n] =: X which all
may occur with a certain probability px .

Guessing the answer
Use the map φ : x → ex , that is, ex is an element of the
canonical basis (0, . . . ,0,1,0, . . .). This gives

p(x) = exp(〈ex , θ〉 − g(θ))

where the normalization is

g(θ) = log
n∑

i=1

exp(θi)
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Example: Laplace Distribution
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Example: Multinomial Distribution

Alexander J. Smola: Estimation in Exponential Families 10 / 42



Example: Poisson Distribution
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Example: Beta Distribution
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Example: Gamma Distribution

Alexander J. Smola: Estimation in Exponential Families 13 / 42



Zoology of Exponential Families

Name φ(x) Domain Measure
Binomial (x ,1− x) {0,1} discrete
Multinomial ex {1, . . . ,n} discrete
Poisson x N0 discrete
Laplace x [0,∞) Lebesgue
Normal (x , x2) R Lebesgue
Beta (log x , log(1− x)) [0,1] Lebesgue
Gamma (log x , x) [0,∞) Lebesgue
Wishart (log |X |,X ) X � 0 Lebesgue
Dirichlet log x x ∈ Rn

+, ‖x‖1 = 1 Lebesgue
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Mini Summary

Exponential Familiy Distribution

p(x ; θ) = exp(〈φ(x), θ〉 − g(θ))

Examples
Binomial, Multinomial, Gaussian, Laplace, Wishart, Dirichlet,
Gamma, Beta, . . .

Lots of popular distributions are drawn from the exponential
family. Unified treatment.

Normalization g(θ)

g(θ) = log
∫

exp (〈φ(x), θ〉) dx
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Log-partition function

g generates cumulants

∂θg(θ) = E
x∼p

[φ(x)] and ∂2
θ g(θ) = Cov

x∼p
[φ(x)]

. . . and so on for higher order cumulants . . .
Consequence

g(θ) is convex
Proof

g(θ) = log
∫

exp(〈φ(x), θ〉)dx

∂θg(θ) =

∫
φ(x) exp(〈φ(x), θ〉)dx∫

exp(〈φ(x), θ〉)dx
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Maximum Likelihood Estimation

Likelihood of a set
Given X := {x1, . . . , xm}, drawn iid, we get

p(X ; θ) =
m∏

i=1

p(xi ; θ) = exp

(
m∑

i=1

〈φ(xi), θ〉 −mg(θ)

)
= exp (m(〈µ, θ〉 − g(θ)))

Here we set µ := 1
m

∑m
i=1 φ(xi).

Maximum Likelihood

minimize
θ

− log p(X ; θ) ⇐⇒ minimize
θ

m (g(θ)− 〈µ, θ〉)

First order conditions yield E[φ(x)] = µ.
Benefit

Solving the maximum likelihood problem is easy.
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Application: Discrete Events

Simple Data
Discrete random variables (e.g. tossing a dice).

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
Probabilities 0.15 0.30 0.10 0.05 0.20 0.20

Maximum Likelihood Solution
Count the number of outcomes and use the relative
frequency of occurrence as estimates for the probability:

pemp(x) =
#x
m

Problems
Bad idea if we have few data.
Bad idea if we have continuous random variables.
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Tossing a dice
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Mini Summary

Step 1: Observe Data
x1, . . . , xm drawn from distribution p(x |θ)

Step 2: Compute Likelihood

p(X |θ) =
m∏

i=1

exp(〈φ(xi), θ〉 − g(θ))

Step 3: Maximize it
Take the negative log and minimize, which leads to

∂θg(θ) =
1
m

m∑
i=1

φ(xi)

This can be solved analytically or (whenever this is
impossible or we are lazy) by Newton’s method.

Caveat: Estimates can be bad if not enough data.
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Priors

Problems with Maximum Likelihood
With not enough data, parameter estimates will be bad.

Prior to the rescue
Often we know where the solution should be. So we encode
the latter by means of a prior p(θ).

Bayes Rule
p(θ|X ) ∝ p(X |θ)p(θ)

Normal Prior
p(θ) ∝ exp

(
− 1

2σ2‖θ‖
2
)
.

Applying it (maximum a posteriori estimator)

− log p(θ|X ) = m (g(θ)− 〈µ, θ〉) + 1
2σ2‖θ‖2 + const.
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Tossing a dice with priors
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Optimization Problems

Maximum Likelihood

minimize
θ

m∑
i=1

g(θ)− 〈φ(xi), θ〉 =⇒ ∂θg(θ) =
1
m

m∑
i=1

φ(xi)

Normal Prior

minimize
θ

m∑
i=1

g(θ)− 〈φ(xi), θ〉+
1

2σ2‖θ‖
2
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Mini Summary

Maximum Likelihood Estimation
Convex optimization problem
Match empirical observations and expectations
Overfitting

Maximum a Posterioi Estimation
Integration vs. Optimization
Gaussian Prior
Convex optimization problem
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Graphical Model

Conditional Independence
x , x ′ are conditionally independent given c, if

p(x , x ′|c) = p(x |c)p(x ′|c)

Distributions can be simplified greatly by conditional
independence assumptions.

Markov Network
Given a graph G(V ,E) with vertices V and edges E
associate a random variable x ∈ R|V | with G.
Subsets of random variables xS, xS′ are conditionally
independent given xC if removing the vertices C from
G(V ,E) decomposes the graph into disjoint subsets
containing S,S′.
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Conditional Independence
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Cliques

Definition
Subset of the graph which is fully connected
Maximal Cliques (they define the graph)

Advantage
Easy to specify dependencies between variables
Use graph algorithms for inference
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Hammersley Clifford Theorem

Problem
Specify p(x) with conditional independence properties.

Theorem

p(x) =
1
Z

exp

(∑
c∈C

ψc(xc)

)
whenever p(x) is nonzero on the entire domain.

Application
Apply decomposition for exponential families where
p(x) = exp(〈φ(x), θ〉 − g(θ)).

Corollary
The sufficient statistics φ(x) decompose according to

φ(x) = (. . . , φc(xc), . . .) =⇒ 〈φ(x), φ(x ′)〉 =
∑

c

〈φc(xc), φc(x ′c)〉
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Example: Normal Distributions

Sufficient Statistics
Recall that for normal distributions φ(x) = (x , xx>).

Clifford Hammersley Application
φ(x) must decompose into subsets involving only
variables from each maximal clique.
The linear term x is OK by default.
The only nonzero terms coupling xixj are those
corresponding to an edge in the graph G(V ,E).

Inverse Covariance Matrix
The natural parameter aligned with xx> is the inverse
covariance matrix.
Its sparsity mirrors G(V ,E).
Hence a sparse inverse kernel matrix corresponds to
graphical model!
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Example: Normal Distributions

Density

p(x |θ) = exp

 n∑
i=1

xiθ1i +
n∑

i,j=1

xixjθ2ij − g(θ)


Here θ2 = Σ−1, is the inverse covariance matrix. We have
that (Σ−1)[ij ] 6= 0 only if (i , j) share an edge.
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Computing g(θ)

Markov Chain

Dynamic Programming

g(θ) = log
∑

x1,...,xT

T∏
t=1

exp (〈φ(xt , xt+1), θ〉)︸ ︷︷ ︸
Mt (xt ,xt+1)

= log
∑

x1

∑
x2

M1(x1, x2)
∑

x3

M2(x2, x3) . . .
∑
xT

MT (xT−1, xT )

We can compute g(θ),p(xt |θ) and p(xt , xt+1|θ) via dynamic
programming.
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Forward Backward Algorithm

Key Idea
Store sum over all x1, . . . , xt−1 (forward pass) and over all
xt+1, . . . , xT as intermediate values
We get those values for all positions t in one sweep.
Extend this to message passing (when we have trees).
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Message Passing
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Message Passing

Idea
Extend the forward-backward idea to trees.

Algorithm
Given clique potentials M(xi , xj)
Initialize messages µij(xj) = 1
Update outgoing messages by

µij(xj) =
∑
xi∈Yi

∏
k 6=j

µki(xi)Mij(xi , xj)

Here (i , k) is an edge in the graph.
Theorem

The message passing algorithm converges after n iterations
(n is diameter of graph).

Hack
Use this for graphs with loops and hope . . .
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Junction Trees

Stock standard algorithms available to transform graph into
junction tree. Now we can use message passing . . .
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Junction Tree Algorithm

Idea
Messages involve variables in the separator sets.

Algorithm
Given clique potentials Mc(xc) and separator sets s.
Initialize messages µc,s(xs) = 1
Update outgoing messages by

µc,s(xs) =
∑
xc\xs

∏
s′ 6=s

µc′,s′(xs′)Mc(xc)

Here s′ is a separator set connecting c with c′.
Theorem

The message passing algorithm converges after n iterations
(n is diameter of the hypergraph).

Hack
Use this for graphs with loops and hope . . .
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Example
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Mini Summary

Hammersley Clifford Theorem
Conditional Independence
Decomposition of joint density
Simplification of the model

Message Passing
For Markov chains the problems decomposes
Can solve exponential sum in linear time
Generalization to trees
Junction trees
Loopy belief propagation
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