Alexander J. Smola Machine Learning Group, RSISE The Australian National University Canberra, ACT 0200 Alex.Smola@anu.edu.au

Slides available at http://mlg.anu.edu.au/~smola/icml2002/

Overview

- Correlated Observations
- Inference with Gaussian Processes
- An Extended Dependence Model
- Examples and Algorithms
 - ★ Regression with Normal Noise (Sparse Greedy Gaussian Processes)
 - ★ Approximate Solution (Newton's Method)
 - \star Transduction (EM-Algorithm)
- Summary of Gaussian Processes
- A Crash Course on Support Vectors
- The Big Picture

Pairs of Observations:

For some x_1, x_2 we observe values y_1, y_2 , e.g., temperature on consecutive days.

Goal:

```
Given a new y_1, can we guess y_2?
```

Idea:

Exploit the correlation between y_1 and y_2 .

Simple Assumption:

Assume that (y_1, y_2) are drawn from a normal distribution with mean μ and covariance K.

Insight:

If we know mean and covariance, we can predict y_2 from y_1 .

Goal

After observing $\mathbf{y} := (y_1, \ldots, y_m)$ we would like to infer the distribution of y at locations x'_1, \ldots, x'_m , i.e., we would like to infer about $\mathbf{y}' := (y(x'_1), \ldots, y(x'_m))$.

Conditional Density

We know that $p(\mathbf{y}, \mathbf{y'}) = p(\mathbf{y'}|\mathbf{y})p(\mathbf{y})$ and therefore

$$p(\mathbf{y}'|\mathbf{y}) = \frac{p(\mathbf{y}, \mathbf{y}')}{p(\mathbf{y})} \propto p(\mathbf{y}_{\text{fixed}}, \mathbf{y}').$$

Lazy Trick

For normal distributions we only need to compute **mean** and **covariance** to determine the density completely (including normalization factors).

Recipe: collect all terms from $p(\mathbf{y}, \mathbf{y'})$ dependent on $\mathbf{y'}$ and ignore the rest.

Predicting y_2 from y_1

Density

$$p(\mathbf{y}) = \frac{1}{(2\pi)^{\frac{m}{2}} |K|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y}-\mu)^{\top} K^{-1}(\mathbf{y}-\mu)\right).$$

So, if we split \mathbf{y} into \mathbf{y} and \mathbf{y}' , we have

$$p(\mathbf{y}, \mathbf{y}') \propto \exp\left(-\frac{1}{2}\left(\begin{bmatrix}\mathbf{y}\\\mathbf{y}'\end{bmatrix} - \begin{bmatrix}\boldsymbol{\mu}\\\boldsymbol{\mu}'\end{bmatrix}\right)^{\top} \begin{bmatrix}K_{\mathbf{y}\mathbf{y}} & K_{\mathbf{y}\mathbf{y}'}\\K_{\mathbf{y}'\mathbf{y}} & K_{\mathbf{y}'\mathbf{y}'}\end{bmatrix}^{-1}\left(\begin{bmatrix}\mathbf{y}\\\mathbf{y}'\end{bmatrix} - \begin{bmatrix}\boldsymbol{\mu}\\\boldsymbol{\mu}'\end{bmatrix}\right)\right)$$

Predicting y' from y (it's all just linear algebra)

Compute lower right part of inverse covariance matrix: this gives us the resulting variance.

Compute linear terms in \mathbf{y}' to get the resulting mean.

Inverting the Covariance Matrix

$$\begin{bmatrix} K_{\mathbf{y}\mathbf{y}} & K_{\mathbf{y}\mathbf{y}'} \\ K_{\mathbf{y}\mathbf{y}'}^{\top} & K_{\mathbf{y}'\mathbf{y}'} \end{bmatrix}^{-1} = \begin{bmatrix} K_{\mathbf{y}\mathbf{y}}^{-1} - \left(K_{\mathbf{y}\mathbf{y}}^{-1}K_{\mathbf{y}\mathbf{y}'}^{\top}\right)^{\top}\chi^{-1}\left(K_{\mathbf{y}\mathbf{y}}^{-1}K_{\mathbf{y}\mathbf{y}'}^{\top}\right) & -\left(K_{\mathbf{y}\mathbf{y}}^{-1}K_{\mathbf{y}\mathbf{y}'}^{\top}\right)\chi^{-1} \\ -\chi^{-1}\left(K_{\mathbf{y}\mathbf{y}}^{-1}K_{\mathbf{y}\mathbf{y}'}^{\top}\right)^{\top} & \chi^{-1} \end{bmatrix}$$

where $\chi = \mathbf{K}_{\mathbf{y}'\mathbf{y}'} - K_{\mathbf{y}\mathbf{y}'}^{\top} \mathbf{K}_{\mathbf{y}\mathbf{y}'}^{-1} \mathbf{K}_{\mathbf{y}\mathbf{y}'}$ (Schur complement).

Reduced Covariance

From the inverse of the covariance matrix we obtain that the only quadratic part in \mathbf{y}' is given by χ . Thus the **variance in \mathbf{y}' is reduced** from $K_{\mathbf{y}'\mathbf{y}'}$ to $K_{\mathbf{y}'\mathbf{y}'} - K_{\mathbf{y}\mathbf{y}'}^{\top}K_{\mathbf{y}\mathbf{y}'}^{\top}K_{\mathbf{y}\mathbf{y}'}^{\top}$ by observing \mathbf{y} .

Predictive Mean

Instead of μ' the mean is shifted to $\mu' + K_{\mathbf{y}\mathbf{y}'}^{\top}K_{\mathbf{y}\mathbf{y}}^{-1}(\mathbf{y}-\mu)$.

Gaussian Process

Problem

What to do if do not know K and μ beforehand?

Simple Solution

We simply **assume** to know the covariance K and mean μ , based on prior knowledge. Simplifying assumption: $\mu = 0$.

Gaussian Process

A stochastic process, where any set of $y(x_1), \ldots, y(x_m)$ is normally distributed, is a Gaussian Process.

Covariance Function

We denote by k(x, x') the function generating the covariance matrix, i.e., k(x, x') = Cov(y(x), y(x')).

Idea

Any function k leading to a symmetric matrix with nonnegative eigenvalues is a valid covariance function.

Examples

$$k(x, x') = \langle x, x' \rangle \text{ Linear Kernel}$$

$$k(x, x') = \exp\left(-\frac{1}{2\sigma}||x - x'||\right) \text{ Laplacian Kernel}$$

$$k(x, x') = \exp\left(-\frac{1}{2\sigma^2}||x - x'||^2\right) \text{ Gaussian RBF Kernel}$$

$$k(x, x') = (\langle x, x' \rangle + c \rangle)^d \text{ with } c \ge 0, \ d \in \mathbb{N} \text{ Polynomial Kernel}$$

$$k(x, x') = B_{2n+1}(x - x') \text{ Spline kernel}$$

$$k(x, x') = \mathbf{E}_c[p(x|c)p(x'|c)] \text{ Conditional Expectation Kernel}$$

Covariance Function

Assume that $\operatorname{Cov}(y(x), y(x')) = \langle x, x' \rangle$ with $x \in \mathbb{R}^n$, i.e., that we have an *n*-dimensional Normal distribution, where the covariance between observations is a bilinear function of x and x' and furthermore that $\mu = 0$.

Density for y

$$p(\mathbf{y}) = (2\pi)^{-\frac{n}{2}} \left(\det X^{\top} X \right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \mathbf{y}^{\top} (XX^{\top})^* \mathbf{y}\right)$$

where $X = (\mathbf{x}_1, \ldots, \mathbf{x}_m)$ and $(XX^{\top})^*$ is the pseudoinverse of XX^{\top} .

Prediction

If we predict \mathbf{y}' on X' we know that the variance is given by

 $k_{\mathbf{y}'\mathbf{y}'} - K_{\mathbf{y}\mathbf{y}'}^{\top} K_{\mathbf{y}\mathbf{y}'}^{-1} K_{\mathbf{y}\mathbf{y}'} = X'^{\top} X' - X'^{\top} X (X^{\top} X)^{-1} X^{\top} X' = X'^{\top} (\mathbf{1} - P_X) X'.$

And we can predict the mean of \mathbf{y}' via $K_{\mathbf{y}\mathbf{y}'}^{\top}K_{\mathbf{y}\mathbf{y}}^{-1}\mathbf{y} = X'^{\top}X(X^{\top}X)^{-1}\mathbf{y} = X'\alpha$. Hence μ' is a **linear function of** X'.

Consequences

More Observations than Dimensions

Here the predictive variance is zero, since it is given by $\mu' = X'^{\top} (\mathbf{1} - P_X) X'$, X spans \mathbb{R}^n , and hence we have $\mathbf{1} - P_X = 0$. The mean can be found as $X'^{\top} X (X^{\top} X)^{-1} \mathbf{y}$. This means that \mathbf{y} lives in an n-

dimensional subspace.

Strange Result

After observing n data pairs we can predict with certainty.

Problem

We cannot cope with **y** that do not live in an *n*-dimensional subspace, spanned by XX^{\top} .

Idea

What if we did not observe **y** directly but rather $y_i = t_i + \xi$, where ξ is some additional random variable.

Indirect Observations

$$X \longrightarrow \mathbf{t} \longrightarrow \mathbf{y}$$

- **t** is drawn from a normal distribution with covariance K
- **y** is conditionally independent of X, that is $p(\mathbf{y}|X, \mathbf{t}) = p(\mathbf{y}|\mathbf{t})$.

Effective Density: Integrating out t

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{t}) p(\mathbf{t}|X) d\mathbf{t}$$

Three Practical Solutions

- $p(\mathbf{y}|X)$ can be computed explicitly and it is "nice". Then we can use $p(\mathbf{y}|X)$ directly for prediction. Example: normal distribution.
- We cannot compute the integral, so we could maximize $p(\mathbf{y}, \mathbf{t}|X) = p(\mathbf{y}|\mathbf{t})p(\mathbf{t}|X)$ over $\mathbf{t}_{\text{train}}, \mathbf{t}_{\text{test}}$ and \mathbf{y}_{test} .
- We can approximate the integral by Markov-Chain Monte-Carlo.

Idea

If we have $y_i = t_i + \xi_i$ where $\mathbf{t} \sim \mathcal{N}(0, K)$ and $\xi_i \sim \mathcal{N}(0, \sigma^2)$, we know that \mathbf{y} , being the sum of two normal random variables, satisfies $\mathbf{y} \sim \mathcal{N}(0, K + \sigma^2 \mathbf{1})$.

Explicit Solution: Posterior Density

$$p(\mathbf{y}|X) = (2\pi)^{-\frac{n}{2}} (\det(K + \sigma^2 \mathbf{1}))^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mathbf{y}^{\top}(K + \sigma^2 \mathbf{1})^{-1}\mathbf{y}\right)$$

Note that the problem of non-invertibility of the covariance matrix disappeared (similar to regularization to improve the condition of a matrix).

Inference

We can simply re-use the results from inference without noise and obtain (for inferring \mathbf{y}' after observing \mathbf{y}, X, X'): $\mathbf{y}' \sim \mathcal{N}(\mu_y, \Sigma_y)$ where

$$\mu_y = K_{\mathbf{tt}'}^{\top} (K_{\mathbf{tt}} + \sigma^2 \mathbf{1})^{-1} \mathbf{y} \text{ and } \Sigma_y = K_{\mathbf{t}'\mathbf{t}'} + \sigma^2 \mathbf{1} - K_{\mathbf{tt}'}^{\top} (K_{\mathbf{tt}} + \sigma^2 \mathbf{1})^{-1} K_{\mathbf{tt}'}$$

Alex Smola: Bayesian Kernel Methods, http://mlg.anu.edu.au/ $\sim smola/icml2002/tutorial.pdf$

Alex Smola: Bayesian Kernel Methods, http://mlg.anu.edu.au/ $\sim smola/icml2002/tutorial.pdf$

General Idea

Rather than maximizing $p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{t})p(\mathbf{t}|X)d\mathbf{t}$ with respect to \mathbf{y} , we take the mode of the integrand and maximize $p(\mathbf{y}|\mathbf{t})p(\mathbf{t}|X)$ directly with respect to \mathbf{y}, \mathbf{t} . This is a Maximum A Posteriori (MAP) approximation.

Strategy

Since we know \mathbf{y}_{train} , we only need to maximize over \mathbf{t}_{train} , \mathbf{t}_{test} and \mathbf{y}_{test} . This means that we maximize

$$p(\mathbf{y}_{\text{train}}|\mathbf{t}_{\text{train}})p(\mathbf{y}_{\text{test}}|\mathbf{t}_{\text{test}})p(\mathbf{t}_{\text{train}},\mathbf{t}_{\text{test}}|X)$$

Special Case

For fixed **t**, the optimal **y** is given by $\mathbf{y} = \mathbf{t}$, hence we only need to maximize $p(\mathbf{y}_{\text{train}}|\mathbf{t}_{\text{train}})p(\mathbf{t}_{\text{train}},\mathbf{t}_{\text{test}}|X)$.

Since $p(\mathbf{t}_{\text{train}}, \mathbf{t}_{\text{test}}|X)$ is a normal distribution, we can always predict $\mathbf{t}_{\text{test}} = \mu_{\text{test}}$, which makes it independent of the \mathbf{t}_{test} .

Optimization Problem

- In the special case that $p(\mathbf{t}|\mathbf{t})$ is the maximizer of $p(\mathbf{y}|\mathbf{t})$ we can perform inference as follows:
- 1. Maximize $p(\mathbf{y}_{\text{train}}|\mathbf{t}_{\text{train}})p(\mathbf{t}_{\text{train}}|X)$ with respect to $\mathbf{t}_{\text{train}}$. This is equivalent to maximizing $\sum_{m} \log p(y_i|t_i) \frac{1}{2}\mathbf{t}^{\top}K_{\mathbf{tt}}^{-1}\mathbf{t}$
- 2. Find mode of $p(\mathbf{t}_{\text{test}} | \mathbf{t}_{\text{train}}, X)$. For $\mu = 0$ this can be found at

$$K_{\mathbf{tt}'}^{\top}K_{\mathbf{tt}}^{-1}\mathbf{t}_{\mathrm{train}} = K_{\mathbf{tt}'}^{\top}\alpha$$

3. Predict $\mathbf{y}_{\text{test}} = \mathbf{t}_{\text{test}}$.

Direct Application

Regression, such as, $p(y|t) \propto \exp(-\lambda |y-t|)$ (Laplacian Noise)

One more Approximation (mainly classification)

Even if $p(\mathbf{t}|\mathbf{t})$ is not the maximizer of $p(\mathbf{y}|\mathbf{t})$, we can use the method above ...

Alex Smola: Bayesian Kernel Methods, http://mlg.anu.edu.au/~smola/icml2002/tutorial.pdf

$$\sum_{i=1}^{m} \log p(y_i|t_i) - \frac{1}{2} \mathbf{t}^\top K_{\mathbf{t}\mathbf{t}}^{-1} \mathbf{t}$$

For convenience we reparametrize $\mathbf{t} = K\alpha$ and minimize

$$R(\alpha) := \sum_{i=1}^{m} -\log p(y_i|[K\alpha]_i) + \frac{1}{2}\alpha^{\top}K\alpha$$

Special Case

Practical Solution

The likelihood terms $-\log(y_i|t_i)$ are convex in t_i . This means that

- There exists one global minimum wrt. \mathbf{t} .
- We can use convex optimization, e.g., the Newton method.

$$\alpha \to \alpha - \left(\partial_{\alpha}^2 R(\alpha)\right)^{-1} \partial_{\alpha} R(\alpha)$$

Alternatives are Conjugate Gradient Descent or sparse greedy methods.

Noise Model

$$p(y|t) = \frac{\sigma}{2} \exp(-\sigma |y - t|)$$

This is a very long-tailed distribution. It occurs, e.g., in the decay of atoms: at any time, the probability that a given fraction of atoms will decay is constant. Result: even after 1000s of years there's still some C^{14} left.

Density and Log-Likelihood

- **Problem:** Sometimes we may not know what the additive density model of the likelihood is, in particular, how long-tailed the distribution may be.
- **Idea:** Use the "worst" distribution as a reference. For distributions composed of a known (in our case Gaussian) part plus up to ε of an unknown part, we have the robust noise model

$$-\log p(y|t) = \begin{cases} \frac{1}{2\sigma}(y-t)^2 & \text{if } |y-t| \le \sigma\\ |y-t| - \frac{\sigma}{2} & \text{otherwise} \end{cases}$$

Density and Log-Likelihood

Basic Idea

For classification purposes we are mainly interested in the ratio between p(y = 1|t)and p(y = -1|t), since this tells us the Bayes optimal classifier (i.e., the classifier with minimal error).

Making the Problem Symmetric

Estimating $\frac{p(y=1|t)}{p(y=-1|t)}$ would help us find a classifier, but it isn't symmetric with respect to y. So we attempt to find t with

$$t(x) = \log \frac{p(y=1|t)}{p(y=-1|t)} \Rightarrow p(y=1|t) = \frac{1}{1+\exp(-t)}.$$

This is equivalent to assuming that $p(y = 1) \propto \exp(t)$ (after normalization).

Likelihood

For the likelihood we obtain

$$p(\mathbf{y}|\mathbf{t}) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i t_i)} \Rightarrow -\log p(Y|X, f) = \sum_{i=1}^{m} \log(1 + \exp(-y_i t_i)).$$

Logistic Regression

Multiclass Logistic Regression

Observation

We may write p(y|x,t) as follows

$$p(y = 1|t) = \frac{\exp(\frac{1}{2}t)}{\exp(\frac{1}{2}t) + \exp(-\frac{1}{2}t)}$$
$$p(y = -1|t) = \frac{\exp(-\frac{1}{2}t)}{\exp(\frac{1}{2}t) + \exp(-\frac{1}{2}t)}$$

Idea

For more than two classes, estimate one t_j per class and compute probabilities p(y|t)via $\exp(t_j)$

$$p(y|t) = \frac{\exp(t_j)}{\sum_{i=1}^{N} \exp(t_i)}$$

Putting it Together

$$p(\mathbf{y}, \mathbf{t}|X) = \prod_{i=1}^{m} \frac{\exp(t_{i,y_i})}{\sum_{j=1}^{N} \exp(t_{i,j})} p(\mathbf{t}|X)$$

Basic Idea

- We want to perform classification in the presence of random label noise (in addition to the noise model $p_0(y|t)$ discussed previously).
- Here, a label is randomly *assigned* to observations with probability 2η (note that this is the same as randomly *flipping* with probability η). We then write

$$p(y|t) = \eta + (1 - 2\eta)p_0(y|t).$$

Consequence

The influence of $p_0(y|t)$ on the posterior is descreased, hence η has a "regularizing" effect on the estimate.

Basic Idea

Assume that the classes to be separated (we assume N = 2 for simplicity) correspond to **Normal distributions** in some space, and that f(x) are **projections** from this space onto a line.

Result

Projections on a real line yield normal distributions. Hence we can model the probability p(y|t) by

$$p(y|t) \propto \exp\left(-\frac{1}{2}(y-t)^2\right).$$

Algorithmic Result

This is essentially **regression on the labels**, which can be done very cheaply. Problem: often the assumption of a normal distribution is not so well satisfied.

Indirect Observations

$$X \longrightarrow \mathbf{t} \longrightarrow \mathbf{y}$$

- **t** is drawn from a normal distribution with covariance K
- **y** is conditionally independent of X, that is $p(\mathbf{y}|X, \mathbf{t}) = p(\mathbf{y}|\mathbf{t})$.

Effective Density: Integrating out t

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{t}) p(\mathbf{t}|X) d\mathbf{t}$$

A Practical Idea

We cannot compute the integral, so we could maximize $p(\mathbf{y}, \mathbf{t}|X) = p(\mathbf{y}|\mathbf{t})p(\mathbf{t}|X)$ over $\mathbf{t}_{\text{train}}, \mathbf{t}_{\text{test}}$ and \mathbf{y}_{test} .

But: we do not know \mathbf{y}_{test} but want to maximize $p(\mathbf{y}, \mathbf{t}|X)$

EM-Algorithm

For a good guess of \mathbf{y}_{test} compute \mathbf{t} and vice versa.

Expectation Step

For $\mathbf{t}_{\text{train}}, \mathbf{t}_{\text{test}}$ compute $p(\mathbf{y}_{\text{test}} | \mathbf{t}_{\text{test}})$. For the logistic regression, e.g., we have

$$p(y = 1|t) = \frac{1}{1 + \exp(-t)}$$
 and $p(y = -1|t) = \frac{1}{1 + \exp(t)}$.

Next compute the expected log-likelihood (denote $p(y_i = 1 | t_i^{\text{old}}) = \pi_i$)

$$Q(\mathbf{t}) := \mathbf{E}_{\mathbf{y}_{\text{test}}} \left[-\log p(\mathbf{t}, \mathbf{y}_{\text{train}}, \mathbf{y}_{\text{test}} | X) \right]$$

= $\sum_{\text{test}} \pi_i \log p(y_i = 1 | t_i) + (1 - \pi_i) \log p(y_i = -1 | t_i)$
+ $\sum_{\text{train}} \log p(y_i | t_i) - \frac{1}{2} \mathbf{t}^\top K \mathbf{t}.$

Maximization Step

Maximize $Q(\mathbf{t})$ with respect to \mathbf{t} (e.g., via Newton's Method).

Iterate until converged

Initialization

We start with the approximation obtained from the *labelled* data alone (i.e., we maximize $p(\mathbf{y}_{\text{train}}, \mathbf{t}_{\text{train}}|X)$ directly). This gives us a first guess for \mathbf{y}_{test} .

Caveat

The EM algorithm will only converge to a **local minimum**. Random initializations can help.

Also note that exact integration would be better (of course).

Side Effect

We can use lots of additional unlabelled data to improve our estimate (in SVM this is called **transduction**).

Observations

We observe \mathbf{y} which depends on \mathbf{t} via $p(\mathbf{y}|\mathbf{t})$ (regression, classification). Furthermore \mathbf{t} is distributed according to a Gaussian Process with covariance K (and zero mean). This yields

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$$

Often $p(\mathbf{t})$ is called a **prior** on \mathbf{t} (since we don't know \mathbf{t}).

Kernels

The covariance function for \mathbf{t} is $k(\mathbf{x}, \mathbf{x'})$, that is $\operatorname{Cov}[t(\mathbf{x}), t(\mathbf{x'})] = k(\mathbf{x}, \mathbf{x'})$.

Approximations

If we can compute $p(\mathbf{y}|X)$ everything is fine.

Otherwise maximize $p(\mathbf{y}, \mathbf{t}|X) = p(\mathbf{y}|\mathbf{t})p(\mathbf{t}|X)$, either directly via the EM-algorithm, or (in yet another approximation) maximize $p(\mathbf{y}_{\text{train}}, \mathbf{t}_{\text{train}}|X)$, subsequently $p(\mathbf{t}_{\text{train}}, \mathbf{t}_{\text{test}}|X)$, and finally $p(\mathbf{y}_{\text{test}}, \mathbf{t}_{\text{test}}|X)$.

Newton Method and Conjugate Gradient Descent

Standard method for convex minimization problems

Nystrom Method, Sparse Greedy Approximation

We pick a subset of entries in the kernel matrix and express \mathbf{t} by such a linear combination (choice at random, randomized optimal, or by diagonal pivoting)

Bayes Committee Machine

Split data into small subsets, solve on them, and combine the posterior distributions

Markov-Chain Monte Carlo

Not quite an optimization method but needed in the case of not-explicitly solvable integrals

The Bigger Picture

Gaussian Processes

"True" Goal

find $p(\mathbf{y}_{\text{test}}|X, \mathbf{y}_{\text{train}})$

Algorithmic Goal

find the mode of the posterior probability minimize regularized risk

mimize – $\log p(\mathbf{y}|\mathbf{t}) - \log p(\mathbf{t}|X)$

Optimization Methods

Newton Method Conjugate Gradient Descent Quadratic Programming Linear Programming

minimize expected risk $\mathbf{E}[c(x, y, f(x))].$

 $\frac{1}{m} \sum_{i=1}^{m} c(x_i, y_i, f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$

The Bigger Picture

Data Dependent Term

The Bigger Picture

Data Independent Term

Prior Probability

$$-\log p(\mathbf{t}|X) = \frac{1}{2}\mathbf{t}^{\top}K^{-1}\mathbf{t}$$

Prediction

 $\mu_{\text{test}} = K_{\text{test,train}} K^{-1} \mathbf{t}_{\text{train}}$ we can compute $K^{-1} \mathbf{t}_{\text{train}}$ beforehand. Quality Measure

Mode of the log-posterior

$$\frac{1}{2}\log|K| + \frac{1}{2}\mathbf{t}^{\top}K^{-1}\mathbf{t} - \log p(\mathbf{y}|\mathbf{t})$$

$$||f||^2 = \alpha^\top K \alpha = \mathbf{t}^\top K^{-1} \mathbf{t}$$
 where $\mathbf{t} = K \alpha$.

$$f(x) = \sum_{i=1}^{m} \alpha_i k(x_i, x)$$

Regularized Risk Functional

$$\sum_{i=1}^{m} c(x_i, y_i, [K\alpha]_i) + \frac{\lambda}{2} \alpha^{\top} K \alpha$$

Alex Smola: Bayesian Kernel Methods, http://mlg.anu.edu.au/~smola/icml2002/tutorial.pdf

The Bigger Picture

Parameter Tuning

Automatic Relevance Determination

maximize $p(\mathbf{y}, \mathbf{t} | X, \omega) p(\omega)$

• Margin Maximization

 $\alpha^{\top} K \alpha$

• Kernel Target Alignment

 $\mathbf{y}^{\top} K \mathbf{y}$

• Bound Minimization

 $\Pr\{R[f] - R_{\rm emp} > \epsilon\} \le \delta$

Normality Assumption for Latent Variables

We observe \mathbf{y} , which depends on a normally distributed \mathbf{t}

Approximations

When exact solution is not possible, maximize the joint distribution $p(\mathbf{y}, \mathbf{t}|X)$. This can be done approximately or via the EM algorithm.

Covariance Functions

Kernels $k(\mathbf{x}, \mathbf{x'})$ determine the shape of the covariance matrix (this encodes prior knowledge).

Connection to SVM

Negative Log Likelihood = Loss Function, Negative Log-Prior = Regularizer

For more information see

http://www.kernel-machines.org http://www.learning-with-kernels.org