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Overview

• Correlated Observations

• Inference with Gaussian Processes

• An Extended Dependence Model

• Examples and Algorithms

? Regression with Normal Noise (Sparse Greedy Gaussian Processes)

? Approximate Solution (Newton’s Method)

? Transduction (EM-Algorithm)

• Summary of Gaussian Processes

• A Crash Course on Support Vectors

• The Big Picture
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A Simple Idea . . .

Pairs of Observations:

For some x1, x2 we observe values y1, y2, e.g., temperature on consecutive days.

Goal:

Given a new y1, can we guess y2?

Idea:

Exploit the correlation between y1 and y2.

Simple Assumption:

Assume that (y1, y2) are drawn from a normal distribution with mean µ and covari-

ance K.

Insight:

If we know mean and covariance, we can predict y2 from y1.
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Inference with Normal Distributions

Goal

After observing y := (y1, . . . , ym) we would like to infer the distribution of y at

locations x′1, . . . , x
′
m, i.e., we would like to infer about y′ := (y(x′1), . . . , y(x′m)).

Conditional Density

We know that p(y,y′) = p(y′|y)p(y) and therefore

p(y′|y) =
p(y,y′)

p(y)
∝ p(yfixed,y

′).

Lazy Trick

For normal distributions we only need to compute mean and covariance to de-

termine the density completely (including normalization factors).

Recipe: collect all terms from p(y,y′) dependent on y′ and ignore the rest.
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Predicting y2 from y1

Alex Smola: Bayesian Kernel Methods, http://mlg.anu.edu.au/∼smola/icml2002/tutorial.pdf Page 5



A Closer Look at the Normal Distribution

Density

p(y) =
1

(2π)
m
2 |K|12

exp

(
−1

2
(y − µ)>K−1(y − µ)

)
.

So, if we split y into y and y′, we have

p(y,y′) ∝ exp

−1

2

([
y

y′

]
−

[
µ

µ′

])> [
Kyy Kyy′

Ky′y Ky′y′

]−1([
y

y′

]
−

[
µ

µ′

])
Predicting y′ from y (it’s all just linear algebra)

Compute lower right part of inverse covariance matrix: this gives us the resulting

variance.

Compute linear terms in y′ to get the resulting mean.
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Prediction: The Gory Details

Inverting the Covariance Matrix[
Kyy Kyy′

K>
yy′ Ky′y′

]−1

=

[
Kyy

−1 −
(
Kyy

−1K>
yy′

) >χ−1
(
Kyy

−1K>
yy′

)
−
(
Kyy

−1K>
yy′

)
χ−1

−χ−1
(
Kyy

−1K>
yy′

) > χ−1

]

where χ = Ky′y′ −K>
yy′Kyy

−1Kyy′ (Schur complement).

Reduced Covariance

From the inverse of the covariance matrix we obtain that the only quadratic part

in y′ is given by χ. Thus the variance in y′ is reduced from Ky′y′ to Ky′y′ −
K>

yy′Kyy
−1Kyy′ by observing y.

Predictive Mean

Instead of µ′ the mean is shifted to µ′ + K>
yy′K

−1
yy (y − µ).
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Gaussian Process

Problem

What to do if do not know K and µ beforehand?

Simple Solution

We simply assume to know the covariance K and mean µ, based on prior knowl-

edge. Simplifying assumption: µ = 0.

Gaussian Process

A stochastic process, where any set of y(x1), . . . , y(xm) is normally distributed, is a

Gaussian Process.

Covariance Function

We denote by k(x, x′) the function generating the covariance matrix, i.e., k(x, x′) =

Cov(y(x), y(x′)).
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Some Covariance Functions

Idea

Any function k leading to a symmetric matrix with nonnegative eigenvalues is a

valid covariance function.

Examples

k(x, x′) = 〈x, x′〉 Linear Kernel

k(x, x′) = exp

(
− 1

2σ
‖x− x′‖

)
Laplacian Kernel

k(x, x′) = exp

(
− 1

2σ2
‖x− x′‖2

)
Gaussian RBF Kernel

k(x, x′) = (〈x, x′〉 + c〉)d with c ≥ 0, d ∈ N Polynomial Kernel

k(x, x′) = B2n+1(x− x′) Spline kernel

k(x, x′) = Ec[p(x|c)p(x′|c)] Conditional Expectation Kernel
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A Simple Example: Linear Kernel

Covariance Function

Assume that Cov(y(x), y(x′)) = 〈x, x′〉 with x ∈ Rn, i.e., that we have an n-

dimensional Normal distribution, where the covariance between observations is a

bilinear function of x and x′ and furthermore that µ = 0.

Density for y

p(y) = (2π)−
n
2
(
detX>X

)−1
2 exp

(
−1

2
y>(XX>)∗y

)
where X = (x1, . . . ,xm) and (XX>)∗ is the pseudoinverse of XX>.

Prediction

If we predict y′ on X ′ we know that the variance is given by

ky′y′ −K>
yy′Kyy

−1Kyy′ = X ′>X ′ −X ′>X(X>X)−1X>X ′ = X ′>(1− PX)X ′.

And we can predict the mean of y′ via K>
yy′K

−1
yyy = X ′>X(X>X)−1y = X ′α.

Hence µ′ is a linear function of X ′.
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Consequences

More Observations than Dimensions

Here the predictive variance is zero, since it is given by µ′ = X ′>(1 − PX)X ′, X

spans Rn, and hence we have 1− PX = 0.

The mean can be found as X ′>X(X>X)−1y. This means that y lives in an n-

dimensional subspace.

Strange Result

After observing n data pairs we can predict with certainty.

Problem

We cannot cope with y that do not live in an n-dimensional subspace, spanned by

XX>.

Idea

What if we did not observe y directly but rather yi = ti + ξ, where ξ is some

additional random variable.
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A More Sophisticated Model

Indirect Observations

X −→ t −→ y

• t is drawn from a normal distribution with covariance K

• y is conditionally independent of X , that is p(y|X, t) = p(y|t).

Effective Density: Integrating out t

p(y|X) =

∫
p(y|t)p(t|X)dt

Three Practical Solutions

• p(y|X) can be computed explicitly and it is “nice”. Then we can use p(y|X)

directly for prediction. Example: normal distribution.

• We cannot compute the integral, so we could maximize p(y, t|X) = p(y|t)p(t|X)

over ttrain, ttest and ytest.

• We can approximate the integral by Markov-Chain Monte-Carlo.
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Regression with Normal Noise

Idea

If we have yi = ti + ξi where t ∼ N(0, K) and ξi ∼ N(0, σ2), we know that y, being

the sum of two normal random variables, satisfies y ∼ N(0, K + σ21).

Explicit Solution: Posterior Density

p(y|X) = (2π)−
n
2 (det(K + σ21))−

1
2 exp

(
−1

2
y>(K + σ21)−1y

)
Note that the problem of non-invertibility of the covariance matrix disappeared

(similar to regularization to improve the condition of a matrix).

Inference

We can simply re-use the results from inference without noise and obtain (for infer-

ring y′ after observing y, X, X ′): y′ ∼ N(µy, Σy)where

µy = K>
tt′(Ktt + σ21)−1y and Σy = Kt′t′ + σ21−K>

tt′(Ktt + σ21)−1Ktt′
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Maximization of p(y|X)

General Idea

Rather than maximizing p(y|X) =
∫

p(y|t)p(t|X)dt with respect to y, we take the

mode of the integrand and maximize p(y|t)p(t|X) directly with respect to y, t.

This is a Maximum A Posteriori (MAP) approximation.

Strategy

Since we know ytrain, we only need to maximize over ttrain, ttest and ytest. This means

that we maximize

p(ytrain|ttrain)p(ytest|ttest)p(ttrain, ttest|X)

Special Case

For fixed t, the optimal y is given by y = t, hence we only need to maximize

p(ytrain|ttrain)p(ttrain, ttest|X).

Since p(ttrain, ttest|X) is a normal distribution, we can always predict ttest = µtest,

which makes it independent of the ttest.
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Maximization of p(y|X), Part II

Optimization Problem

In the special case that p(t|t) is the maximizer of p(y|t) we can perform inference

as follows:

1. Maximize p(ytrain|ttrain)p(ttrain|X) with respect to ttrain. This is equivalent to

maximizing
m∑

i=1

log p(yi|ti)−
1

2
t>K−1

tt t

2. Find mode of p(ttest|ttrain, X). For µ = 0 this can be found at

K>
tt′K

−1
tt ttrain = K>

tt′α
3. Predict ytest = ttest.

Direct Application

Regression, such as, p(y|t) ∝ exp(−λ|y − t|) (Laplacian Noise)

One more Approximation (mainly classification)

Even if p(t|t) is not the maximizer of p(y|t), we can use the method above . . .
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Maximization of p(y|X), Part III

Practical Solution

The step to compute ttrain is the most expensive bit, since we have to maximize
m∑

i=1

log p(yi|ti)−
1

2
t>K−1

tt t

For convenience we reparametrize t = Kα and minimize

R(α) :=

m∑
i=1

− log p(yi|[Kα]i) +
1

2
α>Kα

Special Case

The likelihood terms − log(yi|ti) are convex in ti. This means that

• There exists one global minimum wrt. t.

• We can use convex optimization, e.g., the Newton method.

α → α−
(
∂2

αR(α)
)−1

∂αR(α)

Alternatives are Conjugate Gradient Descent or sparse greedy methods.
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Examples of p(y|t): Laplacian Noise

Noise Model

p(y|t) =
σ

2
exp(−σ|y − t|)

This is a very long-tailed distribution. It occurs, e.g., in the decay of atoms: at any

time, the probability that a given fraction of atoms will decay is constant. Result:

even after 1000s of years there’s still some C14 left.

Density and Log-Likelihood
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Examples of p(y|t): Huber’s Density

Problem: Sometimes we may not know what the additive density model of the likeli-

hood is, in particular, how long-tailed the distribution may be.

Idea: Use the “worst” distribution as a reference. For distributions composed of a

known (in our case Gaussian) part plus up to ε of an unknown part, we have the

robust noise model

− log p(y|t) =

{
1
2σ(y − t)2 if |y − t| ≤ σ

|y − t| − σ
2 otherwise

Density and Log-Likelihood
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Logistic Regression

Basic Idea

For classification purposes we are mainly interested in the ratio between p(y = 1|t)
and p(y = −1|t), since this tells us the Bayes optimal classifier (i.e., the classifier

with minimal error).

Making the Problem Symmetric

Estimating p(y=1|t)
p(y=−1|t) would help us find a classifier, but it isn’t symmetric with respect

to y. So we attempt to find t with

t(x) = log
p(y = 1|t)

p(y = −1|t)
⇒ p(y = 1|t) =

1

1 + exp(−t)
.

This is equivalent to assuming that p(y = 1) ∝ exp(t) (after normalization).

Likelihood

For the likelihood we obtain

p(y|t) =

m∏
i=1

1

1 + exp(−yiti)
⇒ − log p(Y |X, f ) =

m∑
i=1

log(1 + exp(−yiti)).
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Logistic Regression

Probability p(y|t) Negative Log-Likelihood − log p(y|t)
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Multiclass Logistic Regression

Observation

We may write p(y|x, t) as follows

p(y = 1|t) =
exp(1

2t)

exp(1
2t) + exp(−1

2t)

p(y = −1|t) =
exp(−1

2t)

exp(1
2t) + exp(−1

2t)

Idea

For more than two classes, estimate one tj per class and compute probabilities p(y|t)
via

p(y|t) =
exp(tj)∑N
i=1 exp(ti)

Putting it Together

p(y, t|X) =

m∏
i=1

exp(ti,yi
)∑N

j=1 exp(ti,j)
p(t|X)
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Label Noise

Basic Idea

We want to perform classification in the presence of random label noise (in addition

to the noise model p0(y|t) discussed previously).

Here, a label is randomly assigned to observations with probability 2η (note that

this is the same as randomly flipping with probability η). We then write

p(y|t) = η + (1− 2η)p0(y|t).

Consequence

The influence of p0(y|t) on the posterior is descreased, hence η has a “regularizing”

effect on the estimate.
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Discriminant Analysis

Basic Idea

Assume that the classes to be separated (we assume N = 2 for simplicity) correspond

to Normal distributions in some space, and that f (x) are projections from

this space onto a line.

Result

Projections on a real line yield normal distributions. Hence we can model the prob-

ability p(y|t) by

p(y|t) ∝ exp

(
−1

2
(y − t)2

)
.

Algorithmic Result

This is essentially regression on the labels, which can be done very cheaply.

Problem: often the assumption of a normal distribution is not so well satisfied.
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What we really wanted to do . . .

Indirect Observations

X −→ t −→ y

• t is drawn from a normal distribution with covariance K

• y is conditionally independent of X , that is p(y|X, t) = p(y|t).

Effective Density: Integrating out t

p(y|X) =

∫
p(y|t)p(t|X)dt

A Practical Idea

We cannot compute the integral, so we could maximize p(y, t|X) = p(y|t)p(t|X)

over ttrain, ttest and ytest.

But: we do not know ytest but want to maximize p(y, t|X)

EM-Algorithm

For a good guess of ytest compute t and vice versa.
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Expectation-Maximization Algorithm . . .

Expectation Step

For ttrain, ttest compute p(ytest|ttest). For the logistic regression, e.g., we have

p(y = 1|t) =
1

1 + exp(−t)
and p(y = −1|t) =

1

1 + exp(t)
.

Next compute the expected log-likelihood (denote p(yi = 1|told
i ) = πi)

Q(t) := Eytest [− log p(t,ytrain,ytest|X)]

=
∑
test

πi log p(yi = 1|ti) + (1− πi) log p(yi = −1|ti)

+
∑
train

log p(yi|ti)−
1

2
t>Kt.

Maximization Step

Maximize Q(t) with respect to t (e.g., via Newton’s Method).

Iterate until converged
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Expectation-Maximization, Part II

Initialization

We start with the approximation obtained from the labelled data alone (i.e., we

maximize p(ytrain, ttrain|X) directly). This gives us a first guess for ytest.

Caveat

The EM algorithm will only converge to a local minimum. Random initializations

can help.

Also note that exact integration would be better (of course).

Side Effect

We can use lots of additional unlabelled data to improve our estimate (in SVM this

is called transduction).
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Gaussian Processes: Summing Up

Observations

We observe y which depends on t via p(y|t) (regression, classification). Furthermore

t is distributed according to a Gaussian Process with covariance K (and zero mean).

This yields

p(y|X) =

∫
p(y|t)p(t)dt

Often p(t) is called a prior on t (since we don’t know t).

Kernels

The covariance function for t is k(x,x′), that is Cov[t(x), t(x′)] = k(x,x′).

Approximations

If we can compute p(y|X) everything is fine.

Otherwise maximize p(y, t|X) = p(y|t)p(t|X), either directly via the EM-algorithm,

or (in yet another approximation) maximize p(ytrain, ttrain|X),

subsequently p(ttrain, ttest|X), and finally p(ytest, ttest|X).
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Gaussian Processes: Optimization

Newton Method and Conjugate Gradient Descent

Standard method for convex minimization problems

Nystrom Method, Sparse Greedy Approximation

We pick a subset of entries in the kernel matrix and express t by such a linear

combination (choice at random, randomized optimal, or by diagonal pivoting)

Bayes Committee Machine

Split data into small subsets, solve on them, and combine the posterior distributions

Markov-Chain Monte Carlo

Not quite an optimization method but needed in the case of not-explicitly solvable

integrals
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The Bigger Picture

Gaussian Processes Support Vector Machines

“True” Goal

find p(ytest|X,ytrain) minimize expected risk E [c(x, y, f (x))].

Algorithmic Goal

find the mode of the posterior probability

mimize− log p(y|t)− log p(t|X)

minimize regularized risk

1

m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖f‖2

H

Optimization Methods

Newton Method

Conjugate Gradient Descent

Quadratic Programming

Linear Programming
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The Bigger Picture

Data Dependent Term

Negative Log-Likelihood
m∑

i=1

− log p(yi|ti)

Empirical Risk

1

m

m∑
i=1

c(xi, yi, f(xi))

Typical Loss/Likelihood Functions

− log p(y|t) =
1

2
(y − t)2 + c

− log p(y|t) = − log(1 + exp(yt))

c(x, y, f (x)) = max(0, |y − f (x)| − ε)

c(x, y, f (x)) = max(0, 1− yf (x))
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The Bigger Picture

Data Independent Term

Prior Probability

− log p(t|X) =
1

2
t>K−1t

Regularizer

‖f‖2 = α>Kα = t>K−1t where t = Kα.

Prediction

µtest = Ktest,trainK
−1ttrain

we can compute K−1ttrain beforehand.

f (x) =

m∑
i=1

αik(xi, x)

Quality Measure

Mode of the log-posterior

1

2
log |K| + 1

2
t>K−1t− log p(y|t)

Regularized Risk Functional
m∑

i=1

c(xi, yi, [Kα]i) +
λ

2
α>Kα
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The Bigger Picture

Parameter Tuning

Automatic Relevance Determination

maximize p(y, t|X,ω)p(ω)

• Margin Maximization

α>Kα

• Kernel Target Alignment

y>Ky

• Bound Minimization

Pr{R[f ]−Remp > ε} ≤ δ
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Summary

Normality Assumption for Latent Variables

We observe y, which depends on a normally distributed t

Approximations

When exact solution is not possible, maximize the joint distribution p(y, t|X). This

can be done approximately or via the EM algorithm.

Covariance Functions

Kernels k(x,x′) determine the shape of the covariance matrix (this encodes prior

knowledge).

Connection to SVM

Negative Log Likelihood = Loss Function, Negative Log-Prior = Regularizer

For more information see

http://www.kernel-machines.org

http://www.learning-with-kernels.org
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