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Outline

What is Learning?

Classification, Regression, Novelty Detection

Linear Methods

Discriminant Analysis, Perceptron, Maximum Margin Classifier, Single Class Sepa-

ration, LMS-Regression, SVM-Regression.

Preprocessing and Kernels

Standardization, Whitening, Feature Extraction, Kernels, Representer Theorem

Building Kernels

Algebraic Operations, Fourier Transforms, Taylor Expansions

Optimization for SVM

Chunking, Sequential Minimal Optimization, Online Methods

Baysics

Likelihood, Prior, and Posterior Probability, MAP estimation, Gaussian Processes.
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Supervised Learning

Goal

We have some empirical data (images, medical observations, market indicators, so-

cioeconomical background of a person, texts), say xi ∈ X, usually together with

labels yi ∈ Y (digits, diseases, share price, credit rating, relevance) and we want to

find a function that connects x with y.

Cost of Misprediction

Typically, there will be a function c(x, y, f(x)) depending on x, y and the prediction

f (x) which tells us the loss we incur by estimating f (x) instead of the actual value

y. This may be, e.g. the number of wrong characters in an OCR application, the

cost for wrong treatment, the actual loss of money on the stock exchange, the cost

for a bankrupt client, or the amount of annoyance by receiving a wrong e-mail.
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Classification

Goal

We want to find a function f : X→ {±1} or f : X→ R which will tell us whether

a new observation x ∈ X belongs to class 1 or −1 (and possibly the confidence with

which this is so.

Questions

How to rate f , how to find f , how to interpret f (x), . . .
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Applications

Optical Character Recognition

The goal is to classify (handwritten) characters (note that here f has to map into

{a, . . . , z} rather than into {−1, 1}) automatically (form readers, scanners, post).

Spam Filtering

Determine whether an e-mail is spam or not (or whether it is urgent), based on

keywords, word frequencies, special characters ($, !, uppercase, whitespace), . . .

Medical Diagnosis

Given some observations such as immune status, blood pressure, etc., determine

whether a patient will develop a certain disease. Here it matters that we can estimate

the probability of such an outcome.

Face Detection

Given a patch of an image, determine whether this corresponds to a face or not

(useful for face tracking later).
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Regression

Goal

We want to find a function f : X→ R which will tell us the value of f at x.

Application: Getting Rich

Predict the stock value of IBM/CISCO/BHP/TELSTRA . . . given today’s market

indicators (plus further background data).

Application: Wafer Fab

Predict (and optimize) the yield for a microprocessor, given the process parameters

(temperature, chemicals, duration, . . . ).

Application: Network Routers

Predict the network traffic through some hubs/routers/switches. We could reconfig-

ure the infrastructure in time . . .

Application: Drug Release

Predict the requirement for a certain drug (e.g. insulin) automatically.
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Example
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Novelty Detection

Goal

• Build estimator that finds unusual observations and outliers

• Build estimator that can assess how typical an observation is

Idea

• Data is generated according to some density p(x). Find regions of low density.

• Such areas can be approximated as the level set of an auxiliary function. No

need to estimate p(x) directly — use proxy of p(x).

• Specifically: find f (x) such that x is novel if f (x) ≤ c where c is some constant,

i.e. f (x) describes the amount of novelty.
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Applications

Network Intrusion Detection

Detect whether someone is trying to hack the network, downloading tons of MP3s,

or doing anything else unusual on the network.

Jet Engine Failure Detection

You can’t (normally) destroy a couple of jet engines just to see how they fail.

Database Cleaning

We want to find out whether someone stored bogus information in a database (typos,

etc.), mislabelled digits, ugly digits, bad photographs in an electronic album.

Fraud Detection

Credit Card Companies, Telephone Bills, Medical Records

Self calibrating alarm devices

Car alarms (adjusts itself to where the car is parked), home alarm (location of

furniture, temperature, open windows, etc.)
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A Simple Pattern Recognition Algorithm

Learning Problem

Classify a set of observations xi into the classes yi = 1 and yi = −1.

Simple Idea

Compute means of classes yi = 1 and yi = −1 by

c+ =
1

m+

∑
{i:yi=+1}

xi and c− =
1

m−

∑
{i:yi=−1}

xi

and classify a novel point according to which of the two class means c+ and c− is

closer. This leads to the following decision function:

f (x) = 〈c+ − c−,x〉 −
〈
c+ − c−,

c+ + c−
2

〉
= 〈w,x〉 + b

where w = c+ − c− and b =
1

2
(‖c−‖2 − ‖c+‖2)

We can compute f (x) via dot products between xi and x.
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A Simple Pattern Recognition Algorithm
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The Perceptron

Problem

Somtimes, the means are not representative for the actual separation of the two

classes yi = 1 and yi = −1.

Solution

Start with weight vector w = 0 and threshold b = 0. Update w, b only if a mistake

is made by adding some of the instances to w, b. In other words, for mistakes

w←− w + ηyixi and b←− b + ηyi where η > 0.

Convergence Theorem (Novikoff)

Suppose that there exists a ρ > 0, a weight vector w∗ satisfying ‖w∗‖ = 1, and a

threshold b∗ such that yi (〈w∗,xi〉 + b∗) ≥ ρ for all 1 ≤ i ≤ m.

Then for all η > 0, the hypothesis maintained by the perceptron algorithm converges

after no more than (b∗2 + 1)(R2 + 1)/ρ2 updates, where R = maxi ‖xi‖. Clearly,

the limiting hypothesis is consistent with the training data (X, Y ).
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Optimal Separating Hyperplane
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Hard Margin

Goal

Find the hyperplane with maximum distance from both sets yi = 1 and yi = −1.

Linear Function

Hyperplanes are parametrized by linear functions f (x) = 〈w,x〉 + b.

Hard Margin Version (no errors allowed)

Provided that we require

f (xi) ≥ 1 if yi = 1 and f (xi) ≤ −1 otherwise,

the margin between the two sets is given by 2
‖w‖.

Mathematical Programming Setting

minimize
1

2
‖w‖2

subject to yi(〈w,xi〉 + b)− 1 ≥ 0 for all 1 ≤ i ≤ m
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Soft Margin

Problem

Often the data is noisy and we may not be able to find a separating hyperplane at

all.

Solution (Bennet & Mangasarian 1992)

relax the constraints

yif (xi) ≥ 1 into yif (xi) ≥ 1− ξi

and add ξi into the objective function

Mathematical Programming Setting

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi(〈w,xi〉 + b)− 1 + ξi ≥ 0 and ξi ≥ 0 for all 1 ≤ i ≤ m

We will show how to solve this problem later.
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Regularized Risk Functionals

Rewriting the Optimization Problem

We can collapse the optimization problem into

minimize
w,b

1

2C
‖w‖2 +

m∑
i=1

max(0, 1− yif (xi))

Remp[f ] Here the second term is the data-dependent expression. We could call it the

training error or empirical risk.

Ω[f ] The first term ensures that we restrict our choice of functions to simple functions,

i.e., flat functions with small w. It is also called the regularization term.

Rreg[f ] The sum of both terms is called the regularized risk functional and we have

Rreg[f ] := Remp[f ] + λΩ[f ]

Here λ > 0 is the regularization constant.
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Least-Mean-Squares Regression

Learning Problem

Observations xi together with target values yi. Find the linear function f (x) which

minimizes the squared error of misprediction (f (xi)− yi)2.

Solution

Minimize the expression
m∑
i=1

(f (xi)− yi)2 =

m∑
i=1

(〈w,xi〉 − yi)2 = ‖y −Xw‖2.

Here we define y = (y1, . . . , ym) and X = [x1, . . . ,xm].

The minimizer can be obtained by setting the derivative to 0. This yields

w = (X>X)−1X>y

Here again, w is a linear combination of the observations xi.
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Regularized Least-Mean-Squares Regression

Problem

If we have too few data or x is too high dimensional, X>X may not have full rank.

This leads to instabilities.

Solution

Solve the setting as a regularized risk functional. Here we treat
∑

i(f (xi)− yi)2 as

the empirical error term and 1
2‖w‖

2 as the regularization term. This leads to

Rreg[f ] =

m∑
i=1

(f (xi)− yi)2 +
λ

2
‖w‖2.

Optimal Parameters

Taking the derivative of Rreg[f ] with respect to w yields

w = (x>X + λ1)−1X>y.

This means that we add to the main diagonal of X>X to make the optimization

problem better conditioned.
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ε-insensitive Linear Regressor

Optimization Problem

• 1

2
‖w‖2 subject to −ε ≤ yi − (〈w,xi〉 + b) ≤ ε

• 1

2
‖w‖2 +

m∑
i=1

ξi + ξ∗i subject to −(ε + ξi) ≤ yi − (〈w,xi〉 + b) ≤ ε + ξ∗i
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Novelty Detection

Data

Observations xi generated from

some Pr(x), e.g.,

(network usage patterns)

(handwritten digits)

(alarm sensors)

(factory status)

Task

Find unusual events, clean

database, distinguish typical

examples.
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Maximum Distance Hyperplane

Idea Find hyperplane, parameterized by f (x) = 〈w,x〉 + b = 0 that has maximum

distance from origin yet is still closer to the origin than the observations.

Hard Margin

minimize
1

2
‖w‖2

subject to 〈w,xi〉 ≥ 1

Soft Margin

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w,xi〉 ≥ 1− ξi
ξi ≥ 0
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The Dual Optimization Problem

Primal Problem

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to 〈w,xi〉 − 1 + ξi ≥ 0 and ξi ≥ 0

Lagrange Function

We construct a Lagrange Function L by subtracting the constraints, multiplied

by Lagrange multipliers (αi and ηi), from the Primal Objective Function.

L has a saddlepoint at the optimal solution.

L =
1

2
‖w‖2 + C

m∑
i=1

ξi −
m∑
i=1

αi (〈w,xi〉 − 1 + ξi)−
m∑
i=1

ηiξi where αi, ηi ≥ 0

For instance, if ξi < 0 we could increase L without bound via ηi.
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The Dual Optimization Problem II

Optimality Conditions

∂wL = w −
m∑
i=1

αixi = 0 =⇒ w =

m∑
i=1

αixi

∂ξiL = C − αi − ηi = 0 =⇒ αi ∈ [0, C]

Now we substitute the two optimality conditions back into L.

Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi,xj〉 −
m∑
i=1

αi

subject to αi ∈ [0, C]

All this is only possible due to the convexity of the primal problem.

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/icann2001.pdf Page 23



The ν-Trick

Problem

Depending on how we choose C, the number of points selected as lying on the

“wrong” side of the hyperplane H := {x|〈w,x〉 = 1} will vary.

But we would like to specify a certain fraction ν beforehand.

Solution

Use adaptive hyperplane that separates data from the origin, i.e. find

H := {x|〈w,x〉 = ρ} where the threshold ρ is adaptive.

Primal Problem minimize
1

2
‖w‖2 +

m∑
i=1

ξi −mνρ

subject to 〈w,xi〉 − ρ + ξi ≥ 0 and ξi ≥ 0

Dual Problem minimize
1

2

m∑
i=1

αiαj〈xi,xj〉

subject to αi ∈ [0, 1] and

m∑
i=1

αi = νm.
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Optimization Problems with the ν-Trick

Classification minimize
1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉

subject to αi ∈ [0, 1],

m∑
i=1

αi = νm and

m∑
i=1

αiyi = 0.

function expansion f (x) =

m∑
i=1

αiyi〈xi,x〉 + b

Regression minimize
1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j)〈xi,xj〉 −
m∑
i=1

yi(αi − α∗i )

subject to αi, α
∗
i ∈ [0, C] and

m∑
i=1

(αi + α∗i ) = Cνm.

function expansion f (x) =

m∑
i=1

(αi − α∗i )〈xi,x〉 + b
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Preprocessing

Zero Mean

Different offsets may skew the estimates considerably. So it is convenient to transform

x→ Φ(x) = x−Mean(x)

Unit Variance

Sometimes, whitening of the variables helps. Then we use

x→ Φ(x) = C−
1
2 (x−Mean(x))

which leads to zero mean and unit covariance matrix. ICA would be another option,

leading to decorrelated input variables.

Prior Knowledge

If we know that certain features Φi(x) are useful for our task, we expand x into

x→ Φ(x) = (x,Φ1(x), . . . ,Φn(x))
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Kernels and Nonlinearity

Insight 1 With the transformations Φ(x) we imme-

diately obtain nonlinear functions f (x) =

〈w,Φ(x)〉 + b.

Insight 2 Since the data only appears in the form of dot

products all we need to do is replace every 〈x, x′〉 by

〈Φ(x),Φ(x′)〉.
This works for an arbitrary nonlinearity Φ(x).

Insight 3 instead of computing Φ(x) explicitly use ker-

nel function

k(x,x′) := 〈Φ(x),Φ(x′)〉.

Strategy Replace every 〈x,x′〉 by k(x,x′).
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Example: Polynomial Kernels

Quadratic Features in R2 Φ(x) :=
(
x2

1,
√

2x1x2, x
2
2

)
Dot Product

〈Φ(x),Φ(x′)〉 =
〈(
x2

1,
√

2x1x2, x
2
2

)
,
(
x′1

2
,
√

2x′1x
′
2, x
′
2
2
)〉

= 〈x, x′〉2.

Extension This dot product trick does not only work for 2nd order polynomials but

for any order: k(x, x′) = 〈x, x′〉d.
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Kernels and Mercer’s Theorem

Question which functions k(x, x′) can we use as kernels?

Short Answer all functions k(x, x′) generating symmetric matrices K ∈ Rm×m

with Kij := k(xi, xj) where all eigenvalues are nonnegative.

Long Answer all k(x, x′) satisfying the conditions of Mercer’s Theorem:

Any k : X× X→ R that satisfies∫
k(x, x′)f (x)f (x′)dxdx′ ≥ 0

for all f ∈ L2(X) can be written as

k(x, x′) =
∑
i

λiφi(x)φi(x
′)

where φi(x) are the eigenfunctions of the integral operator
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The Representer Theorem

Question is there always a kernel expansion

f (x) =
∑
i

αik(xi, x)

if we minimize

Rreg[w] =
1

2
‖w‖2 + C

m∑
i=1

c(xi, yi, f(xi))

Answer (Representer Theorem) YES

Kimeldorf and Wahba, 1971; Cox and O’Sulivan, 1990; This holds for SVM, Gaussian

Processes, Regularization Networks, . . .

Consequences the number of kernels increases with the number of observations

m. Finding the optimal solutions will typically cost O(m2) to O(m3) operations

(depending on the data).
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Support Vector Classification with Kernels

Primal Optimization Problem this is identical to the non-kernelized one, only

that x is replaced by Φ(x).

Dual Optimization Problem

minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj)

subject to αi ∈ [0, 1],

m∑
i=1

αi = νm and

m∑
i=1

αiyi = 0.

function expansion f (x) =

m∑
i=1

αiyik(xi,x) + b

Note the size of the optimization problem has not increased — we still have to deal

with m variables, regardless of the dimensionality of w.
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Regression and Novelty Detection

Regression

minimize
1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j)k(xi,xj)−
m∑
i=1

yi(αi − α∗i )

subject to αi, α
∗
i ∈ [0, C] and

m∑
i=1

(αi + α∗i ) = Cνm.

function expansion f (x) =

m∑
i=1

(αi − α∗i )k(xi,x) + b

Novelty Detection

minimize
1

2

m∑
i=1

αiαjk(xi,xj)

subject to αi ∈ [0, 1] and

m∑
i=1

αi = νm.

function expansion f (x) =

m∑
i=1

αik(xi,x)

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/icann2001.pdf Page 32



Zoo: Translation Invariant Kernels

Theorem: Any translation invariant symmetric k(x, x′) = k(x − x′) satisfies

Mercer’s condition if it has a nonnegative Fourier transform.

The decay properties of the spectrum tell us the smoothness of k.

Gaussian RBF Kernels k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
The Fourier transform is also a Gaussian, however with inverse width.

Laplacian RBF Kernels k(x, x′) = exp

(
−‖x− x

′‖
σ

)
The Fourier spectrum decays less rapidly (damped harmonic oscillator in one dimen-

sion).

Indicator Function k(x, x′) = 1[−1,1](x−x′) is not a Mercer kernel since its Fourier

transform, the sinc function, has negative entries.

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/icann2001.pdf Page 33



Zoo: Translation Inveriant Kernels
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Zoo: Dot Product Kernels

Theorem Any dot product kernel k(x, x′) = k(〈x, x′〉) satisfies Mercer’s condition

if it has a nonnegative Taylor series expansion:

k(x,x′) =

∞∑
i=0

ai〈x,x′〉i

The decay of the Taylor expansion determines the smoothness of k.

Polynomial Kernels k(x, x′) = (〈x, x′〉 + c)
d

This is a proper kernel only for d ∈ N and c ≥ 0.

tanh-Kernels

k(x, x′) = tanh (a〈x, x′〉 + b) is never a proper kernel, for any a, b ∈ R.

Infinite Polynomials k(x, x′) =
1

1− 〈x, x′〉
for ‖x‖, ‖x′‖ ≤ 1

is a Mercer kernel with bad regularization properties (flat Taylor series).
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Zoo: Dot Product Kernels
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Zoo: Making Even More Kernels

Sums for two Mercer kernels k1 and k2, k is a kernel if

k(x,x′) = k1(x,x′) + k2(x,x′)

Products k(x,x′) = k1(x,x′) · k2(x,x′)

Integrals for an arbitrary function κ(x,x′), k is a kernel if

k(x,x′) =

∫
κ(x, z)κ(x′, z)dz

For instance, use a conditional probability distribution κ(x, z) = p(x|z) (Watkins’

conditional independence kernel).

Explicit Maps for an arbitrary function Φ(x) and a positive definite matrix M

k(x,x′) = Φ>(x)MΦ(x)

is a kernel. For instance, choose M to be the inverse Fisher information matrix and

Φ(x) the Fisher scores (Haussler & Jaakkola).
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How to write a Paper with Kernels

1. Take old and trusty linear algorithm from the 60s

2. Write it in the form of dot products

3. Replace dot products by kernel function

4. Make sure the complexity of the estimate does not go overboard (large ‖w‖). If

necessary, add regularization

5. Perform theoretical analysis.

6. Write paper.
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Unconstrained Optimization

Newton Method

We want to minimize f (x). Use quadratic approximation and solve at each step for

the minimum of the latter explicitly. We get f ′(x) + f ′′(x)ε = 0 which yields the

following algorithm:

Require: x0, Precision ε

Set x = x0

repeat

x = x− f ′(x)
f ′′(x)

until |f ′(x)| ≤ ε

Output: x

Convergence of Newton Method Let g : R→ R be a twice continuously differ-

entiable function and denote by x∗ ∈ R a point with f ′′(x∗) 6= 0 and f ′(x∗) = 0.

Then, provided x0 is sufficiently close to x∗, the sequence generated by the Newton

method will converge to x∗ at least quadratically.
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Convex Optimization Techniques

Interior Point Methods

solve constraints for primal and dual optimization problem simultaneously and sat-

isfy the Kuhn-Tucker conditions. This involves inverting K, i.e. O(m3).

Sherman-Morrison-Woodbury Methods

exploit the fact that K does not really have full rank and invert a rank-n approx-

imation of K. This leads to O(m · n2) algorithms.

Chunking and Sequential Minimal Optimization

take subproblems of the big quadratic minimization problem and optimize over a

subset variables at a time. Smaller memory footprint and sometimes fast.

Online Methods

stochastic gradient descent on the objective function. Simple, approximate algo-

rithm, small memory footprint.
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Flashback: Singleclass Dual QP

Dual Quadratic Program for ν-SVM

minimize
1

2

m∑
i,j=1

αiαjKij

subject to αi ∈ [0, 1] and

m∑
i=1

αi = νm.

Splitting divide the m patterns into a working set Sw and a fixed set Sf . Minimizing

the objective function over Sw can only decrease it.

Subproblem on Sw

minimize
1

2

m∑
i,j∈Sw

αwi α
w
j K

ww
ij +

∑
i∈Sw,j∈Sf

αwi α
f
jK

wf
ij

subject to αwi ∈ [0, 1] and

m∑
i∈Sw

αwi = νm−
∑
i∈Sf

αfi .
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Subset Selection and Chunking

Simple Version

Start with small set, train, keep SVs, add in new patterns, repeat. This works

great for almost noise free data, e.g. USPS and NIST OCR problems (Vapnik &

Chervonenkis, 1965, AT&T OCR Group, 1990es).

Basic Idea

Take subset of variables, say αi . . . αI , optimize over the latter while keeping the rest

fixed. Then pick next set of variables, optimize, . . . (Osuna, Freund, Girosi, 1997).

Probably best implementation by Joachims (SVMLight). Works great on texts.

Common Problems

Chunking does not always converge in practice and speed of convergence is highly

problem dependent. Which variables should you pick? Performance degrades

with the number of additional linear constraints. Most problems occur if many

variables are neither 0 nor C.
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Chunking Strategies
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Sequential Minimal Optimization

Basic Idea

Optimize only over pairs of variables — we need pairs to keep the equality constraints

satisfied (Platt, 1998).

Advantage

Analytic solution of subproblems is possible (at least for linear and quadratic loss

functions), simple one-dimensional convex minimization otherwise.

Scaling Behaviour

Very large problems can be solved at only O(m) storage cost, provided we are willing

to wait long enough (time scales with O(mγ) where γ > 2, depending on the choice

of problems and modifications).

Problems

Some formulations are hard to deal with in SMO: many nonzero start variables,

several constraints at the same time (as in ν-SVM), special selection strategy for

most modifications.
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Explicit Solution for 2 Variables

Dual Quadratic Program in 2 Variables

minimize
1

2

2∑
i,j=1

αiαjKij +

2∑
i=1

αivi

subject to αi ∈ [0, 1] and

2∑
i=1

αi = ∆

Here ∆ = νm−
m∑
i=3

αi and Ci =

m∑
j=3

αjKij.

Reduce Problem to 1 Variable

Use α1 = ∆− α2 and substitute into the restricted optimization problem. This is a

quadratic function on an interval, hence we can find the solution

αnew
2 =

∆(K11 −K12)− C1 + C2

K11 + K22 − 2K12
and have to restrict it such that αnew

2 and ∆−αnew
2

are in [0, 1].
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Selection Strategy

Problem

which variables i, j should we select?

Idea 1

we only make progress if αi is not already satisfying the optimality conditions, i.e.

f (xi) > ρ for αi = 0 or f (xi) < ρ for αi = 1.

Idea 2

we can show that the change by optimizing over i, j depends on
Ci−Cj

K11+K22−2K12
.

Strategy, Part 1

find i where Ci is large and where simultaneously αi does not satisfy the constraints.

Strategy, Part 2

find j where Ci − Cj is large and where also αj does not satisfy the constraints.
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Stopping Rule

Problem

when have we optimized enough?

Idea 1

use a lower bound for the objective function and stop if the relative gap size is small

enough.

Idea 2

recall that the KKT-conditions tell us the gap size (i.e., the terms we subtracted in

the Lagrange function).

Gap for Novelty Detection

Gap =

m∑
i=1

αi max(f (xi)− ρ, 0) + (C − αi) max(ρ− f (xi), 0)

This also makes a good selection criterion for optimization over subsets in other

chunking strategies. Similar methods can be used for classification and regression.
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Online Learning: Motivation

Problem:

Training complexity increases with sample size and number of basis functions. Typ-

ically training time scales with O(m2+γ) and prediction time with O(m).

Problem:

Distributions may change over time and we want to have a time dependent predictor.

Problem:

Iterative reduced set methods using projection are too expensive.

Design Goal:

Mainly local observations should matter for a predictor. Limited time horizon

Design Goal: Cheap and simple update rules for added patterns.

Design Goal: Almost as good as batch learning.
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Online Learning: HOWTO

Start with regularized risk functional

Rreg[f ] = E [c(x, y, f(x))] +
λ

2
‖w‖2

in the Reproducing Kernel Hilbert Space.

Perform stochastic gradient descent

on Rreg[f ], i.e. at step t (with xt, yt) replace

E [c(x, y, f(x))] ≈ c(xt, yt, f(xt)).

and walk λ in the negative gradient direction w→ w − Λ∂wRstoch[w, t].

Stochastic Gradient:

∂w

[
c(xt, yt, f(xt)) +

λ

2
‖w‖2

]
= c′(xt, yt, f(xt))xt + λw.
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Update Rule

Update in Function Space:

w→ w − λ∂wRstoch[f, t] = (1− Λλ)w − Λc′(xt, yt, f(xt))k(xt, ·).

Update in Coefficient Space:

αt = −Λc′(xt, yt, f(xt))

αi = (1− Λλ)αi for i < t

We assume a kernel expansion f (x) =
∑t

i=1 αik(xi,x)

Finite Time Horizon:

coefficients decay over time. After t iterations we have

αi → (1− λΛ)tαi

We can drop αi after t steps with an error of at most (1− λΛ)t
√
k(xi,xi).

More about this tomorrow . . .
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Prior Probability

Idea 1

Quite often we have a rough idea of what function we can expect beforehand.

•We observe similar functions in practice.

•We think that e.g. smooth functions should be more likely.

•We would like a certain type of functions.

•We have prior knowledge about specific properties, e.g. vanishing second

derivative, etc.

Idea 2

We have to specify somehow, how likely it is to observe a specific function f from

an overall class of functions. This is done by assuming some density p(f ) describing

how likely we are to observe f .
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Examples

Speech Signal

We know that the signal is bandlimited, hence any signal containing frequency com-

ponents above 10kHz has density 0.

Parametric Prior

We may know that f is a linear combination of sin x, cos x, sin 2x, and cos 2x and

that the coefficients may be chosen from the interval [−1, 1].

p(f ) =

{
1
16 if f = α1 sinx + α2 cos x + α3 sin 2x + α4 cos 2x with αi ∈ [−1, 1]

0 otherwise

Prior on Function Values

We assume that there is a correlation between the function values fi at location

f (xi). There we have

p(f1, f2, f3) =
1√

(2π)3 detK
exp

(
−1

2
(f1, f2, f3)>K−1(f1, f2, f3)

)
.
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Prior on Function Values

Covariance Matrix

We may assume that the function values f (xi) are correlated and follow a normal

distribution with zero mean and covariance matrix K. In other words

f (x1), . . . , f (xm) ∼ N(0, K−1)

This means that for thes observations, we can write the prior distribution of

f := f (x1), . . . , f (xm) as

p(f) = (2π)−
m
2 (detK)−

1
2 exp

(
−1

2
f>K−1f

)
.

Covariance Function

We posit that the matrix K is given by a covariance function k via Kij = k(xi,xj).

Later we will see that k is identical to the kernel function of SVM.
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How to use Priors

Bayes Rule

We want to infer the probability of f , having observed X, Y . By Bayes’ rule we

obtain

p(f |X, Y ) =
p(Y |f,X)p(f |X)

p(Y |X)
.

This is also often called the posterior probability of observing f , after that the

data X, Y arrived.

Usual Assumption

Typically we assume that X has no influence as to which f we may assume, i.e.

p(f |X) = p(f ) (X and f are independent random variables).

Likelihood

p(Y |f,X) is the Likelihood term that we used in Maximum Likelihood estimation.

All that is happening is a reweighting of the likelihood by the prior distribution.
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Inference

Goal

We want to infer f , possibly its value at a new location x via p(f |X, Y ).

Trick

The quantity p(Y |X) is usually quite hard to obtain, moreover it is independent of

f , therefore we can just treat it as a normalizing factor and we obtain

p(f |X, Y ) ∝ p(Y |f,X)p(f )

The normalization constant can be taken care of later.

Prediction

If we want to compute the expected value of f (x) at a new location all we have to

do is compute

E[f (x)] =

∫
f (x)p(f |X, Y )df

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/icann2001.pdf Page 58



Inference, Part II

Variance

Likewise, to infer the predictive variance we compute

E
[
(f (x)− E[f (x)])2

]
=

∫
(f (x)− E[f (x)])2 p(f |X, Y )df

This means that we can estimate the variation of f (x), given the data and our prior

knowledge about f , as encoded by p(f ).
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Approximate Inference

Problem

Nobody wants to compute integrals . . .

Idea

After all, we are only averaging, so replace the mean of the distribution by the

mode and hope that it will be ok. This leads to the maximum a posteriori estimate

(see next slide).

Lucky Coincidence

For Gaussian distributions (and many others) mode and mean coincide.

Problem 2

For some distributions it does not work well . . .

Idea 2

Approximate the posterior p(f |X, Y ) by a parametric model. This is often re-

ferred to as variational approximation.
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Maximum a Posteriori Estimate

Maximizing the Posterior Probability

To find the hypothesis f with the highest posterior probability we have to maximize

p(f |X, Y ) =
p(Y |f,X)p(f |X)

p(Y |X)

Lazy Trick

Since we only want f (and p(Y |X) is independent of f ), all we have to do is maximize

p(Y |f,X)p(f ).

Taking Logs

For convenience we get f by minimizing

− log p(Y |f,X)p(f |X) = − log p(Y |f,X)− log p(f ) = − log L− log p(f )

So all we are doing is to reweight the likelihood by − log p(f ). This looks

suspiciously like the regularization term. We will match up the two terms later.
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Maximum a Posteriori Estimate, Part II

Variance

Once we found the mode f0 of the distribution, we might as well approximate the

variance by approximating p(f |X, Y ) with a normal distribution around f0.

This is done by computing the second order information at f0, i.e. ∂2
f−log p(f |X, Y ).
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Connection to Regularized Risk

Recycling of the Likelihood

Match up terms as we did with the likelihood and the loss function. In particular,

we recycle these terms:

c(x, y, f(x)) ≡ − log p(y − f (x))

p(y|f (x) ≡ exp(−c(x, y, f(x))

Now all we have to do is take care of mλΩ[f ] and − log p(f ).

Regularizer and Prior

The correspondence

mλΩ[f ] + c = − log p(f ) or equivalently p(f ) ∝ exp(−mλΩ[f ])

is the link between regularizer and prior.

Caveat

The translation from regularizer into prior works only to some extent, since the

integral over f need not converge.
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Gaussian Processes and SVM

Posterior Distribution for Regression with Additive Gaussian Noise

p(f |Z) ∝ exp

(
−1

2

m∑
i=1

(yi − f (xi))
2

)
exp

(
−1

2
f>K−1f

)
If we reparametrize f = Kα we have

p(α|Z) ∝ exp

(
−1

2
‖y −Kα‖2 − 1

2
α>Kα

)
Regularized Risk Functional for LMS Regression

Rreg[f ] =

m∑
i=1

(yi − f (xi))
2 +

λ

2
‖w‖2

If we reparametrize w =
∑m

i=1 αiΦ(xi) we have

Rreg[f ] = −1

2
‖y −Kα‖2 +

λ

2
α>Kα

Taking negative logs, we can see that GP and SVM lead to the same maximum a

posteriori solution.
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Summary

• Learning as risk minimization

• Feature Spaces and Kernel Trick

• The ν-Trick

• Chunking and SMO

• Online Learning

• Bayesian Methods

For more information see

http://www.kernel-machines.org

or . . . shameless plug . . . buy the book

Schölkopf and Smola: Learning with Kernels

MIT Press, November 2001

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/icann2001.pdf Page 65


