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Convex Set and Function
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Definition:
A set X (subset of a vector space) is convex iff

λx + (1− λ)x′ ∈ X ∀x, x′ ∈ X and λ ∈ [0, 1]

Convex Functions:
A function f : X → R is convex if for any x, x′ ∈ X and
λ ∈ [0, 1] such that λx + (1− λ)x′ ∈ X

f (λx + (1− λ)x′) ≤ λf (x) + (1− λ)f (x′)

If strict inequality =⇒ a strictly convex function

Below Sets:
Let f : X → R be convex. If X is convex then the set
X := {x ∈ X : f (x) ≤ c} is convex



Convex Minimization
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Theorem:
Function f : X → R be convex
The sets X and X ⊆ X be convex sets
Let c be the minimum of fX

All x ∈ X for which f (x) = c form a convex set

Corollary:
Let f, c1, c2, . . . cn : X → R be convex
The set X be convex
The optimization problem

min
x∈X

f (x)

s.t ci(x) ≤ 0

has its solution (if it exists) on a convex set.
If strictly convex functions solution is unique



Convex Maximization
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Basic Idea:
Convex maximization is generally hard
Maximum attained on corner points or vertices

Maximization on an Interval:
Let f : [a, b] → R be convex
f attains its maximum at either a or b

Maxima of Convex Functions:
Let X be a compact convex set in X

Denote by |X the vertices of X

Let f : X → R be convex
Then

sup{f (x)|x ∈ X} = sup{f (x)|x ∈ |X}



Newton Method
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Basic Idea:
We replace a function by its quadratic approximation
If approximations are good =⇒ fast convergence

Maximization on an Interval:
Suppose f : [a, b] → R is convex and smooth
The following iterations converge to min f (x)

xn+1 = xn −
f ′(xn)

f ′′(xn)

Convergence:
Let g(x) := f ′(x) be continuous and twice differentiable
Let x∗ ∈ R and g(x∗) = 0 and g′(x∗) 6= 0

x0 is sufficiently close to x∗ =⇒ quadratic convergence



Gradient Descent
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Basic Idea:
How do you climb up a hill?
Take a step up and see how to go up again

Algorithm:
Suppose f : X → R is convex and smooth
The following iterations converge to min f (x)

xn+1 = xn − γf ′(xn)

Where γ > 0 minimizes f locally
Such a γ must always exist

Convergence:
Can show that converges in infinite steps
We will not do the proof!



Predictor Corrector Methods
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Basic Idea:
Make a linear approximation to f

Substitute your estimate into f and correct

Example:
Suppose f (x) = f0 + ax + 1

2bx
2

Linear approximation f ≈ f0 + ax

Predictor solution xpred = −f0
a

Substitute back f0 + axcorr + 1
2b(

f0
a )2

Solve xcorr = −f0
a

(
1 + 1

2
f0b
a2

)
Iterate until convergence
Notice how we never compute

√
b !



KKT Conditions
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Optimization:
Optimization problem

min f (x)

s.t ci(x) ≤ 0

ej(x) = 0

Lagrange Function:
Define

L(x, α, β) := f (x) +

n∑
i=1

αici(x) +

n′∑
j=1

βjej(x)

αi ≥ 0 and βj ∈ R

Theorem:
If L(x̄, α, β) ≤ L(x̄, ᾱ.β̄) ≤ L(x, ᾱ, β̄) then x̄ is a solution



Diff. Convex Problems
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Optimization Problem:
Optimization problem

min f (x)

s.t ci(x) ≤ 0

ej(x) = 0

KKT Conditions:
If f, ci are convex and differentiable then x̄ is a solution
if ∃ ᾱ ∈ Rn s.t. αi ≥ 0 and

∂xL(x̄, ᾱ) = ∂xf (x̄) +

n∑
i=1

ᾱi∂xci(x̄) = 0

∂αi
L(x̄, ᾱ) = ci(x̄) ≤ 0∑

i

ᾱici(x) = 0



KKT Gap
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Proximity to Solution:
Let f and ci be convex and differentiable
For any (x, α) such that x feasible, αi ≥ 0 and

∂xL(x, α) = 0

∂αi
L(x, α) ≤ 0

If x̄ is the optimal then the KKT gap is given by

f (x) ≥ f (x̄) ≥ f (x) +
∑

i

αici(x)

Also called the duality gap

Duality:
Instead of solving a primal problem solve a dual problem
Find saddle point of L(x, α)



Optimization Problem
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Let Hij = yiyjk(xi,xj), then
Primal Problem:

minimize
1

2
‖θ‖2

subject to yi(〈θ,xi〉 + b)− 1 ≥ 0 for all i ∈ {1, 2, . . . ,m}
Dual Problem:

maximize −1

2
α>Hα +

∑
i

αi

subject to
∑

i

αiyi = 0 and αi ≥ 0 for all i ∈ {1, 2, . . . ,m}.

Generalized Dual Problem:

maximize −1

2
α>Hα + c>α

subject to Aα = 0 and 0 ≤ αi ≤ C



SimpleSVM The Big Picture
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Chunking:

Take chunks of data and solve the smaller problem.
Retain the SV’s, add the next chunk, and retrain.
Repeat until convergence.

SimpleSVM:

Take an active set and optimize.
Select a violating point greedily.
Add violator to the active set.
Add/delete only one SV at a time.
Recompute the exact solution.
Repeat until convergence.



A Picture Helps - I
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Consider a hard margin linear SVM.

x and o belong to different classes.

Three SV’s and one violator are shown.



A Picture Helps - II
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The support plane has been shifted.

It passes thru the violator (rank-one update).

A previous SV is now well classified (rank-one downdate).



What About Box Constraints?
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Point 1 is the current optimal solution.

Add a new constraint α and optimize over (α, α′).

Point 3 is the unconstrained optimal.

Move from point 3 to 2 where α′ becomes bound.

Now optimize over α to reach point 4.

If 4 does not satisfy box constraints repeat.



Putting It Together
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Initialize with a suitable pair of points.

Step 1:

Locate a violating point and add to the active set.
Ignore box constraints if any.
Solve the optimization problem for the active set.
Step 2:

If new solution satisfies box constraints we are done.
Else remove the first box constraint violator.

Goto Step 2.
Repeat until no violators (Goto Step 1).



Other Issues
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Choosing Initial Points:

Randomized strategies.
Find a good pair with high probability.

Rank One Updates:

Kernel matrices are generally rank-degenerate.
Cheap factorization algorithms.
Cheap rank-one updates (Vishwanathan, 2002).

Convergence:

Few sweeps thru the dataset suffice.
Speed of convergence: Linear.



Performance Comparisons - I
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Performance comparison between SimpleSVM and NPA
on the Spiral dataset and the WPBC dataset.



Performance Comparisons - II
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Performance comparison between SimpleSVM and NPA
on the Adult dataset.



Performance Comparisons - III
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Performance comparison between SimpleSVM and SMO
on the Spiral and WPBC datasets.



Questions?
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