

Convex Optimization SVM's and Kernel Machines

S.V.N. "Vishy" Vishwanathan

vishy@axiom.anu.edu.au

National ICT of Australia and Australian National University

Thanks to Alex Smola and Stéphane Canu

Overview

- Review of Convex Functions
- Convex Optimization
- Dual Problems
- Interior Point Methods
- Simple SVM
- Sequential Minimal Optimization (SMO)
- Miscellaneous Tricks of Trade

Definition:

A set X (subset of a vector space) is convex iff

 $\lambda x + (1 - \lambda) x' \in \mathfrak{X} \quad \forall x, x' \in \mathfrak{X} \text{ and } \lambda \in [0, 1]$

Convex Functions:

▲ A function f : X → ℝ is convex if for any x, x' ∈ X and λ ∈ [0, 1] such that $\lambda x + (1 - \lambda)x' \in X$

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

 \checkmark If strict inequality \implies a strictly convex function

Below Sets:

Let $f : X → \mathbb{R}$ be convex. If X is convex then the set
 $X := \{x \in X : f(x) \le c\}$ is convex

Theorem:

- Function $f : \mathcal{X} \to \mathbb{R}$ be convex
- **.** The sets \mathfrak{X} and $X \subseteq \mathfrak{X}$ be convex sets

. Let c be the minimum of f_X

. All $x \in X$ for which f(x) = c form a convex set

Corollary:

- Let $f, c_1, c_2, \ldots c_n : \mathfrak{X} \to \mathbb{R}$ be convex
- \checkmark The set ${\mathfrak X}$ be convex
- The optimization problem

$$\min_{x \in \mathfrak{X}} f(x)$$

s.t $c_i(x) \le 0$

has its solution (if it exists) on a convex set.

If strictly convex functions solution is unique

Basic Idea:

- Convex maximization is generally hard
- Maximum attained on corner points or vertices

Maximization on an Interval:

- Let $f : [a, b] \to \mathbb{R}$ be convex
- \checkmark f attains its maximum at either a or b

Maxima of Convex Functions:

- \checkmark Let X be a compact convex set in $\mathfrak X$
- \checkmark Denote by |X the vertices of X
- **.** Let $f: \mathfrak{X} \to \mathbb{R}$ be convex

🍠 Then

$$\sup\{f(x)|x\in X\}=\sup\{f(x)|x\in |X\}$$

CT AUSTRALI

Basic Idea:

- We replace a function by its quadratic approximation
- **I**f approximations are good \implies fast convergence

Maximization on an Interval:

- Suppose $f : [a, b] \to \mathbb{R}$ is convex and smooth
- **•** The following iterations converge to $\min f(x)$

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Convergence:

- **•** Let g(x) := f'(x) be continuous and twice differentiable
- $\textbf{ Let } x^* \in \mathbb{R} \text{ and } g(x^*) = 0 \text{ and } g'(x^*) \neq 0$
- \blacksquare x_0 is sufficiently close to $x^* \implies$ quadratic convergence

Gradient Descent

Basic Idea:

- How do you climb up a hill?
- Take a step up and see how to go up again

Algorithm:

- **9** Suppose $f: \mathfrak{X} \to \mathbb{R}$ is convex and *smooth*
- **.** The following iterations converge to $\min f(x)$

$$x_{n+1} = x_n - \gamma f'(x_n)$$

- Such a γ must always exist

Convergence:

- Can show that converges in infinite steps
- We will not do the proof!

Basic Idea:

- \checkmark Make a linear approximation to f
- Substitute your estimate into f and correct

Example:

- $\ \, {\rm Suppose} \ \, f(x)=f_0+ax+\tfrac{1}{2}bx^2$
- **•** Linear approximation $f \approx f_0 + ax$
- **Predictor solution** $x_{pred} = -\frac{f_0}{a}$
- Substitute back $f_0 + ax_{corr} + \frac{1}{2}b(\frac{f_0}{a})^2$

• Solve
$$x_{corr} = -\frac{f_0}{a} \left(1 + \frac{1}{2} \frac{f_0 b}{a^2} \right)$$

- Iterate until convergence
- Solution Notice how we never compute \sqrt{b} !

KKT Conditions

Optimization:

Optimization problem

 $\min f(x)$ s.t $c_i(x) \le 0$ $e_j(x) = 0$

Lagrange Function: Define

$$L(x, \alpha, \beta) := f(x) + \sum_{i=1}^{n} \alpha_i c_i(x) + \sum_{j=1}^{n'} \beta_j e_j(x)$$
$$\alpha_i \ge 0 \text{ and } \beta_j \in \mathbb{R}$$

Theorem:

 $If L(\bar{\mathbf{x}}, \alpha, \beta) \leq L(\bar{\mathbf{x}}, \bar{\alpha}, \bar{\beta}) \leq L(x, \bar{\alpha}, \bar{\beta}) \text{ then } \bar{\mathbf{x}} \text{ is a solution}$

Optimization Problem:

Optimization problem

 $\min f(x)$ s.t $c_i(x) \le 0$ $e_j(x) = 0$

KKT Conditions:

If *f*, *c_i* are convex and differentiable then $\bar{\mathbf{x}}$ is a solution if ∃ $\bar{\alpha} \in \mathbb{R}^n$ s.t. $\alpha_i \ge 0$ and

$$\partial_x L(\bar{\mathbf{x}}, \bar{\alpha}) = \partial_x f(\bar{\mathbf{x}}) + \sum_{i=1}^n \bar{\alpha}_i \partial_x c_i(\bar{\mathbf{x}}) = 0$$
$$\partial_{\alpha_i} L(\bar{\mathbf{x}}, \bar{\alpha}) = c_i(\bar{\mathbf{x}}) \le 0$$
$$\sum_i \bar{\alpha}_i c_i(x) = 0$$

KKT Gap

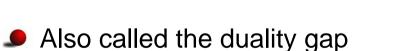
Proximity to Solution:

- **J** Let f and c_i be convex and differentiable
- **.** For any (x, α) such that x feasible, $\alpha_i \ge 0$ and

$$\partial_x L(x,\alpha) = 0$$

$$\partial_{\alpha_i} L(x,\alpha) \le 0$$

● If $\bar{\mathbf{x}}$ is the optimal then the KKT gap is given by $f(x) \ge f(\bar{\mathbf{x}}) \ge f(x) + \sum_{i} \alpha_i c_i(x)$



Duality:

Instead of solving a primal problem solve a dual problem

. Find saddle point of $L(x, \alpha)$

Optimization Problem

1

Let $H_{ij} = y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$, then Primal Problem:

 $\begin{array}{ll} \text{minimize} & \frac{1}{2} \|\theta\|^2 \\ \text{subject to} & y_i(\langle \theta, \mathbf{x}_i \rangle + b) - 1 \geq 0 \text{ for all } i \in \{1, 2, \dots, m\} \end{array}$

Dual Problem:

maximize
$$-\frac{1}{2}\alpha^{\top}H\alpha + \sum_{i}\alpha_{i}$$

subject to $\sum_{i}\alpha_{i}y_{i} = 0$ and $\alpha_{i} \ge 0$ for all $i \in \{1, 2, ..., m\}$.

Generalized Dual Problem:

maximize
$$-\frac{1}{2}\alpha^{\top}H\alpha + c^{\top}\alpha$$

subject to $A\alpha = 0$ and $0 \le \alpha_i \le C$

SimpleSVM The Big Picture

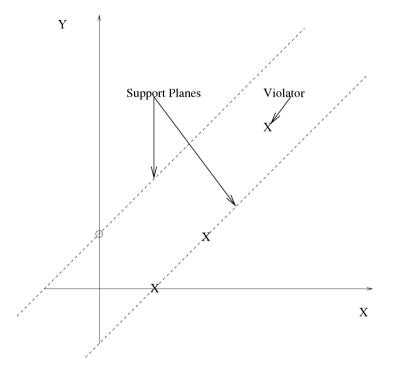
Chunking:

- Take chunks of data and solve the smaller problem.
- Retain the SV's, add the next chunk, and retrain.
- Repeat until convergence.

SimpleSVM:

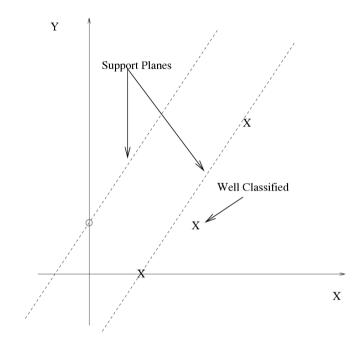
- Take an active set and optimize.
- Select a violating point greedily.
- Add violator to the active set.
- Add/delete only one SV at a time.
- Recompute the exact solution.
- Repeat until convergence.

A Picture Helps - I



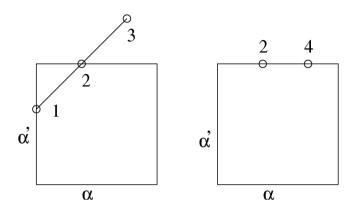
- Consider a hard margin linear SVM.
- x and o belong to different classes.
- Three SV's and one violator are shown.

A Picture Helps - II



- The support plane has been shifted.
- It passes thru the violator (rank-one update).
- A previous SV is now well classified (rank-one downdate).

What About Box Constraints?



- Point 1 is the current optimal solution.
- Add a new constraint α and optimize over (α, α') .
- Point 3 is the unconstrained optimal.
- Move from point 3 to 2 where α' becomes bound.
- **.** Now optimize over α to reach point 4.
- If 4 does not satisfy box constraints repeat.

Putting It Together

- Initialize with a suitable pair of points.
- **Step 1**:
 - Locate a violating point and add to the active set.
 - Ignore box constraints if any.
 - Solve the optimization problem for the active set.
 - **Step 2**:
 - If new solution satisfies box constraints we are done.
 - Else remove the first box constraint violator.
 - Goto Step 2.
 - Repeat until no violators (Goto Step 1).

Other Issues

Choosing Initial Points:

- Randomized strategies.
- Find a good pair with high probability.

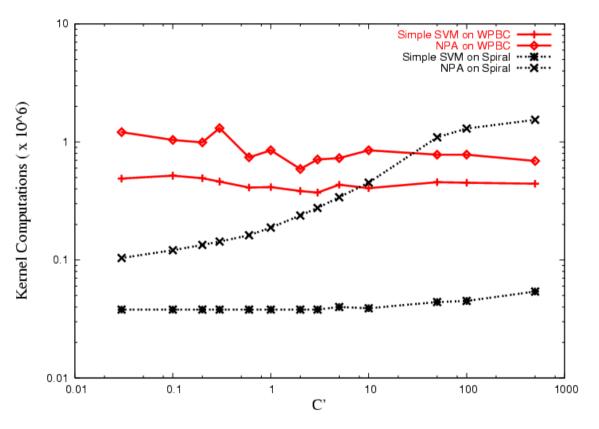
Rank One Updates:

- Sernel matrices are generally rank-degenerate.
- Cheap factorization algorithms.
- Cheap rank-one updates (Vishwanathan, 2002).

Convergence:

- Few sweeps thru the dataset suffice.
- Speed of convergence: Linear.

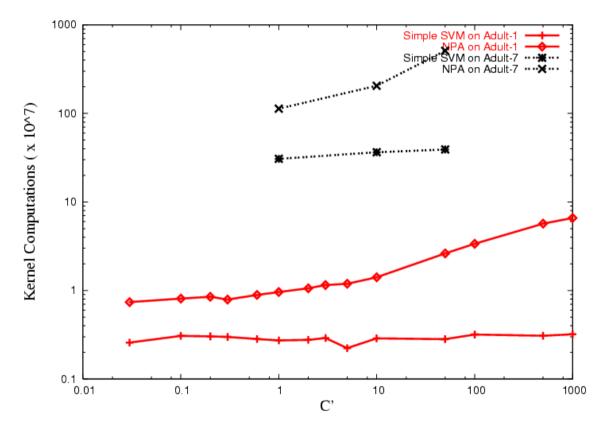
Performance Comparisons - I



Performance comparison between SimpleSVM and NPA on the Spiral dataset and the WPBC dataset.

NATIONAI

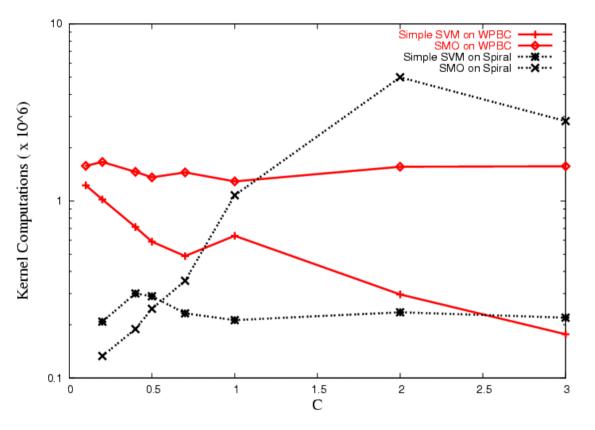
Performance Comparisons - II



Performance comparison between SimpleSVM and NPA on the Adult dataset.

NATIONAI

Performance Comparisons - III



Performance comparison between SimpleSVM and SMO on the Spiral and WPBC datasets.

Questions?

