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Basic Equation:
® We will model densities by

p(x;0) = exp((¢(x),0) — g(0))

Why Exponential Families:
® Dense in space of densities
® The vector ¢(x) closely related to kernels
® We can use (-, -)qc where H is a RKHS
® Conditional models are easy to derive
® Close connections to graphical models

Where is the Catch:
® Statisticians work with explicitly parameterized ¢(x)
® The log-partition function is difficult to compute
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Basic Equation:
$» Some algebra gives us

9(6) = log /x exp((¢(x), 0)) dx

$® Computing this integral over X is painful

Moment Generating Function:
® Derivatives of g(f) generate moments of ¢(x)

6’99((9) = Ep(x;@) [¢(X)]
6’39(9) = Varp(x;&) [¢<X>]
Other Propetrties:

® The log-partition function is convex
® It is extremely smooth and differentiable (C'*° function)
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Setting:
® lLet X be a measurable setand k£ : X x X — R a kernel
® Let f(-) = (¢(-), O)sc and f(x) = (f(-), k(-, X))z
® The set of continuous and bounded densities on X be P
® Furthermore let H be dense in C%(X)

Universal Density Estimators:

® The densities p¢(x) := exp(f(x) — gr(0)) are dense in P
Proof Sketch:

® Find a f(x) close to given p(x)

® Show that [, exp(f(x))dx is bounded

® |t follows that |log p(x) — log p(x)| is small

#® Hence conclude that |ps(x) — p(x)| is small
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Why Condition:
® We are given (x;, ;) pairs
$® Given a new data point we want to predict its label y
® We don’'t want to waste modeling effort on x

The Answer:
® By Bayes rule we know

o Dp(x,y;0)

The Exponential Family:
® If p(y|x;0) is a member of the exponential family

p(y|x;0) = exp({¢(x,y),6) — g(0]x))
g(0]%) = log L xp((6(x,7),6) dy
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Basic Idea:
® Giveniid data X = {(x;,v;)}
® Data drawn from a conditional exponential density
#® Find the ¢ which maximizes p(y| X; 0)

The Model:
® By iid assumption

log p(y| X; 0) = Zlogp yi| xi; 0)

The Solution:
® By setting dyp(y| X;0) = 0 we get

1 m
Epylx0)[0(x, )] = — > olxi )
1=1
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Basic Idea:
® We assume that ¢ is a random variable

® Also assume a prior (belief) over 6
® Now the data updates our belief about the prior

The Normal Prior:
® We assume 6 ~ N(0, o)
® By Bayes rule

p(0] X, y) o< p(y| X;0)p(0)
The Solution:
® By setting 9y — logp(0| X, y) = 0 we get

1 0
Ep(y| x;0) [¢(X7 y)] — E Z qb(Xia yl) o

mao?
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Key ldea:
® Lett: X — R be a stochastic process

® Fixany {xy,...,Xn,}
® ForaGP {t{(x1),...,t(x,,)} are jointly normal

Parameters of a GP:
®» Mean

p(x) == E[t(x))
® Covariance function (kernel)
k(x,x') := Cov(t(x), t(x"))
Simplifying Assumption:
® Mean u(x) =0
® We know the form of k(x, x’)
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Key ldea:
® Letd ~ N(0,0%)
® Thenlogp(y|x;0) + g(f|x) is a GP
Why?:
® Observe that logp(y| x;0) + g(0| x) = (p(x,y),0)
® Hence it is normally distributed
® The mean Ey[(o(x,y),0) =0
® The covariance is given by

E(x,y), (X, ) = o (o(x,y), 6(x, /)

Observations:
® Kernel can depend on both x and y

® Extensions to multi-class problems possible
® If y has structure we can exploit it
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Optimization Problem:
® The MAP estimate solves

1 -
argminy Qf‘QHHHQ - Z<¢<Xi7 yi), 0) + g(0] x;)

1=1

® By the representer theorem

m
0 = Z Z iy (X, i)
1=1 yey
Observations:
® Convex Optimization problem
® If | Y| is large we are in trouble
® [n case of binary classification we use ¢(x, y) = yo(x)
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Key ldea:
® We estimate p(x |¢) based on {x;}
® All x; with p(x; |6) < p, are novel

Tightening the Belt:
® Don’'t waste modeling effort on high density regions
® Only shape of p(x |#) is important

The Solution:
- (52

$® Estimate
® We use py = exp(p — g(0))
® Helps get rid of pesky g(6) term
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Exponential Family:
® Using the iid assumption our objective function is

m
argmaxy H min
i=1

(p(f);@OW)

, 1) p(0)

The Final Form:
® If we assume a normal prior and use log likelihoods

m 1
argming Z max(p — Z k(xi,%x;,0) + F‘ \9”2
J

1=1
® Exactly the problem solved by the Single class SVM!

The v-Trick:
® Assume p(p) x exp(rvmp)
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Basic Idea:
® In OCR classification 0 and 8 are frequently confused
® Digits like 0 and 1 are generally well classified
® Worst confused class is a measure of margin

The Solution:
® If we consider the ratio

R(x,y,0) = minexp({¢(x, y) — #(x,y),0))

Y7y’

® Measure of confusion with the next best class
® \We can interpret this as the margin

The Consequences:
® SVM like large margin classifiers are special cases
® Extensions to multi-class setting natural
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Algorithm:
® Arguably the simplest algorithm in machine learning!
$® Maintains a weight vector 6
® Given (x;, ;)
» If y;(p(x;),0) > 0 do nothing
» Else 0 = 0 + yio(x;)
® Notice how 0 =}, y;0(x;)
Novikoff's Theorem:
® Given S = {(x;, y; } non-trivial
® Let R = max; ||¢(x;)|| be the radius of the samples
® J 0" suchthat||0*|| =1 and y; (6%, o(x;)) > v > 0
® The kernel perceptron makes at most (R2/v)* mistakes
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The Question:
® Consider Y ={1,2,3}
® Suppose we know p(1|x;) = 0.4
® Can we conclude thaty, = 1?

The Answer:
® No! because we might have p(2|x;) = 0.5
® We want the true class probability to be peaked

The Consequences:
® This is equivalent to maximizing the log odds ratio
® Using a normal prior on ¢ we can solve
min %| 0]
s.t. log R(x;,y;,0) > 1
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The Problem:

$» We solve
min 5||0]?
s.t. log R(x;,y;,0) > 1
® Recall that
log R(x,y, ) = max{(¢(x, y) — o(x,y'),0)

y#y'
The Binary Case:
® Again recall that ¢(x, y) = y¢(x) in the binary case
® Hence R(x,y,0) = 2(¢p(x),0)
® The equivalent optimization problem is
min %| 6]

s.t.y (p(x;),0) > 1
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Note:
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Minimize §||’LUH2 subject to y;((w, z;) + b) > 1 for all ¢
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Slack Variables:
® Data might not be linearly separable in feature space

$® To avoid over fitting ignore noisy points
® We modify the optimization problem

min 30" + C' 32, &
st R(x,y,0) >1—-& & >0
Upper Bound on Error:
® If we define

£(0) = max{0,1 — R(x;,y;,0)}

m

ks Z &(0) 2 — Z &(yi, sign(log R(x;, 9, 0)))
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Slack Variables:
® We include a slack term for every linear constraint

® The optimization problem becomes

min g[|0]* +C 32,37, 2, &
st (P(xi, yi) — d(xi,y),0) > 1 =&y &y >0
Upper Bound on Ranking Error:
» Now we can write a bound

—Zﬁ Z {y 7 yi - {o(x5,1),0) = (x4, i), 0)

1=1

Comments:
® More constraints = harder problem to solve
® Solution might not be sparse!
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