
S.V.N. “Vishy” Vishwanathan: Exponential Families, Page 1

Exponential Families
Classification and Novelty Detection

S.V.N. “Vishy” Vishwanathan

vishy@axiom.anu.edu.au

National ICT of Australia
and

Australian National University

Thanks to Alex Smola, Thomas Hofmann and Stéphane
Canu



Overview

S.V.N. “Vishy” Vishwanathan: Exponential Families, Page 2

Review of Exponential Family

Log Partition Function

Maximum Likelihood Estimation

MAP Estimation

Conditional Densities

Gaussian Processes and the Normal Prior

Novelty Detection

Large Margin Classifiers



Exponential Family
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Basic Equation:
We will model densities by

p(x; θ) = exp(〈φ(x), θ〉 − g(θ))

Why Exponential Families:
Dense in space of densities
The vector φ(x) closely related to kernels
We can use 〈·, ·〉H where H is a RKHS
Conditional models are easy to derive
Close connections to graphical models

Where is the Catch:
Statisticians work with explicitly parameterized φ(x)

The log-partition function is difficult to compute



Log-Partition Function
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Basic Equation:
Some algebra gives us

g(θ) = log

∫
X

exp(〈φ(x), θ〉) dx

Computing this integral over X is painful

Moment Generating Function:
Derivatives of g(θ) generate moments of φ(x)

∂θg(θ) = Ep(x;θ) [φ(x)]

∂2
θg(θ) = Varp(x;θ) [φ(x)]

Other Properties:
The log-partition function is convex
It is extremely smooth and differentiable (C∞ function)



Universal Density Estimators
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Setting:
Let X be a measurable set and k : X×X → R a kernel
Let f (·) = 〈φ(·), θ〉H and f (x) = 〈f (·), k(·,x)〉H
The set of continuous and bounded densities on X be P

Furthermore let H be dense in C0(X)

Universal Density Estimators:
The densities pf(x) := exp(f (x)− gf(θ)) are dense in P

Proof Sketch:
Find a f (x) close to given p̄(x)

Show that
∫

X
exp(f (x)) dx is bounded

It follows that | log pf(x)− log p̄(x)| is small
Hence conclude that |pf(x)− p̄(x)| is small



Conditional Models
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Why Condition:
We are given (xi, yi) pairs
Given a new data point we want to predict its label y
We don’t want to waste modeling effort on x

The Answer:
By Bayes rule we know

p(y|x; θ) =
p(x, y; θ)

p(x; θ)

The Exponential Family:
If p(y|x; θ) is a member of the exponential family

p(y|x; θ) = exp(〈φ(x, y), θ〉 − g(θ|x))

g(θ|x) = log

∫
Y

exp(〈φ(x, ȳ), θ〉 d ȳ



Max-Likelihood Estimation
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Basic Idea:
Given iid data X = {(xi, yi)}
Data drawn from a conditional exponential density
Find the θ which maximizes p(y|X; θ)

The Model:
By iid assumption

log p(y|X; θ) =

m∑
i=1

log p(yi|xi; θ)

The Solution:
By setting ∂θp(y|X; θ) = 0 we get

Ep(y|x;θ)[φ(x, y)] =
1

m

m∑
i=1

φ(xi, yi)



MAP Estimation
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Basic Idea:
We assume that θ is a random variable
Also assume a prior (belief) over θ

Now the data updates our belief about the prior

The Normal Prior:
We assume θ ∼ N(0, σ2)

By Bayes rule

p(θ|X, y) ∝ p(y|X; θ)p(θ)

The Solution:
By setting ∂θ − log p(θ|X, y) = 0 we get

Ep(y|x;θ)[φ(x, y)] =
1

m

∑
φ(xi, yi)−

θ

mσ2



Gaussian Processes
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Key Idea:
Let t : X → R be a stochastic process
Fix any {x1, . . . ,xm}
For a GP {t(x1), . . . , t(xm)} are jointly normal

Parameters of a GP:
Mean

µ(x) := E[t(x)]

Covariance function (kernel)

k(x,x′) := Cov(t(x), t(x′))

Simplifying Assumption:
Mean µ(x) = 0

We know the form of k(x,x′)



Our Model and GP
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Key Idea:
Let θ ∼ N(0, σ2)

Then log p(y|x; θ) + g(θ|x) is a GP

Why?:
Observe that log p(y|x; θ) + g(θ|x) = 〈φ(x, y), θ〉
Hence it is normally distributed
The mean Eθ[〈φ(x, y), θ〉 = 0

The covariance is given by

k((x, y), (x′, y)) = σ2〈φ(x, y), φ(x′, y′)〉
Observations:

Kernel can depend on both x and y

Extensions to multi-class problems possible
If y has structure we can exploit it



Representer Theorem
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Optimization Problem:
The MAP estimate solves

argminθ

1

2σ2
||θ||2 −

m∑
i=1

〈φ(xi, yi), θ〉 + g(θ|xi)

By the representer theorem

θ =

m∑
i=1

∑
y∈Y

αiyφ(xi, yi)

Observations:
Convex Optimization problem
If |Y | is large we are in trouble
In case of binary classification we use φ(x, y) = yφ(x)



Novelty Detection
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Key Idea:
We estimate p(x |θ) based on {xi}
All xi with p(xi |θ) < p0 are novel

Tightening the Belt:
Don’t waste modeling effort on high density regions
Only shape of p(x |θ) is important

The Solution:
Estimate

min

(
p(xi |θ)

p0
, 1

)
We use p0 = exp(ρ− g(θ))

Helps get rid of pesky g(θ) term



Optimization Problem
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Exponential Family:
Using the iid assumption our objective function is

argmaxθ

m∏
i=1

min

(
p(xi |θ)

p0
, 1

)
p(θ)

The Final Form:
If we assume a normal prior and use log likelihoods

argminθ

m∑
i=1

max(ρ−
∑

j

k(xi,xj, 0) +
1

2σ2 ||θ||2

Exactly the problem solved by the Single class SVM!

The ν-Trick:
Assume p(ρ) ∝ exp(νmρ)



Odds Ratio
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Basic Idea:
In OCR classification 0 and 8 are frequently confused
Digits like 0 and 1 are generally well classified
Worst confused class is a measure of margin

The Solution:
If we consider the ratio

R(x, y, θ) = min
y 6=y′

exp(〈φ(x, y)− φ(x, y′), θ〉)

Measure of confusion with the next best class
We can interpret this as the margin

The Consequences:
SVM like large margin classifiers are special cases
Extensions to multi-class setting natural



Kernel Perceptron
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Algorithm:
Arguably the simplest algorithm in machine learning!
Maintains a weight vector θ

Given (xi, yi)

If yi〈φ(xi), θ〉 ≥ 0 do nothing
Else θ = θ + yiφ(xi)

Notice how θ =
∑

j yjφ(xj)

Novikoff’s Theorem:
Given S = {(xi, yi} non-trivial
Let R = maxi ||φ(xi)|| be the radius of the samples
∃ θ∗ such that ||θ∗|| = 1 and yi〈θ∗, φ(xi)〉 ≥ γ > 0

The kernel perceptron makes at most (R/γ)2 mistakes



Odds Ratio As Margin
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The Question:
Consider Y = {1, 2, 3}
Suppose we know p(1|xi) = 0.4

Can we conclude that yi = 1?

The Answer:
No! because we might have p(2|xi) = 0.5

We want the true class probability to be peaked

The Consequences:
This is equivalent to maximizing the log odds ratio
Using a normal prior on θ we can solve

min 1
2||θ||

2

s.t. log R(xi, yi, θ) ≥ 1



Recovering SVM’s
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The Problem:
We solve

min 1
2||θ||

2

s.t. log R(xi, yi, θ) ≥ 1

Recall that

log R(x, y, θ) = max
y 6=y′

〈φ(x, y)− φ(x, y′), θ〉

The Binary Case:
Again recall that φ(x, y) = yφ(x) in the binary case
Hence R(x, y, θ) = 2〈φ(x), θ〉
The equivalent optimization problem is

min 1
2||θ||

2

s.t.yi〈φ(xi), θ〉 ≥ 1



Optimal Separating Hyperplane
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Minimize
1

2
‖w‖2 subject to yi(〈w, xi〉 + b) ≥ 1 for all i



Soft Margin SVM’s
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Slack Variables:
Data might not be linearly separable in feature space
To avoid over fitting ignore noisy points
We modify the optimization problem

min 1
2||θ||

2 + C
∑

i ξi

s.t.R(xi, yi, θ) ≥ 1− ξi ξi ≥ 0

Upper Bound on Error:
If we define

ξi(θ) = max{0, 1−R(xi, yi, θ)}
then

1

m

m∑
i=1

ξi(θ) ≥ 1

m

m∑
i=1

δ(yi, sign(log R(xi, yi, θ)))



Another Formulation
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Slack Variables:
We include a slack term for every linear constraint
The optimization problem becomes

min 1
2||θ||

2 + C
∑

i

∑
y 6=yi

ξiy

s.t.〈φ(xi, yi)− φ(xi, y), θ〉 ≥ 1− ξiy ξiy ≥ 0

Upper Bound on Ranking Error:
Now we can write a bound

1

m

m∑
i=1

ξiy(θ) ≥ 1

m

m∑
i=1

|{y 6= yi : 〈φ(xi, y), θ〉 ≥ 〈φ(xi, yi), θ〉}|

Comments:
More constraints =⇒ harder problem to solve
Solution might not be sparse!



Questions?

S.V.N. “Vishy” Vishwanathan: Exponential Families, Page 21


