

Kernels A Machine Learning Overview

S.V.N. "Vishy" Vishwanathan

vishy@axiom.anu.edu.au

National ICT of Australia and Australian National University

Thanks to Alex Smola, Stéphane Canu, Mike Jordan and Peter Bartlett

Overview

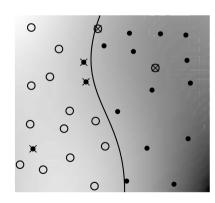
- (Really Really) Quick Review of Basics
- Functional Analysis Viewpoint of RKHS
 - Evaluation Functional
 - Kernels and RKHS
 - Mercer's Theorem
- Properties of Kernels
 - Positive Semi-Definiteness
 - Constructing Kernels of RKHS
- Regularization
 - Norm in a RKHS
 - Representer Theorem
 - Fourier Perspective

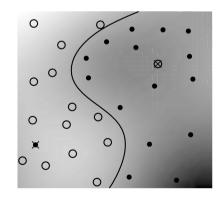
Data:

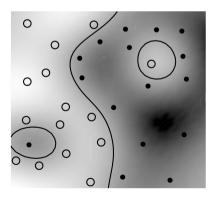
- Pairs of observations (\mathbf{x}_i, y_i)
- Underlying distribution $P(\mathbf{x}, y)$
- Examples (blood status, cancer), (transactions, fraud)

Task:

- Find a function $f(\mathbf{x})$ which predicts y given \mathbf{x}
- In the function $f(\mathbf{x})$ must generalize well







What Are Kernels?

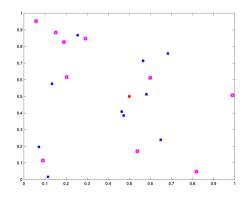
Problem:

- Pairs of observations (\mathbf{x}_i, y_i)
- \checkmark We want to decide the label of point \mathbf{x}

Intuition:

 \checkmark If $k(\mathbf{x}, \mathbf{x}_i)$ is a measure of influence then

$$y(\mathbf{x}) = \sum_{i} k(\mathbf{x}, \mathbf{x}_i) y_i$$



General Form:

We typically want to use functions of the form

$$f(\mathbf{x}) = \Lambda(\langle \phi(\mathbf{x}), \theta \rangle - g(\theta))$$

We map data to $\phi(\mathbf{x})$ and then apply Λ to output function

Special Cases:

- For Linear Regression $\Lambda = 1$
- **•** For classification use $\Lambda = \operatorname{sign}$
- **.** For density estimation use $\Lambda = \exp(-\frac{1}{2})$

The RKHS Connection:

- We need a way to tie this to kernels
- The RKHS setting is suited for this purpose
- We implicitly map data to a high dimensional space

Vector Space:

A set ${\mathfrak X}$ such that $\forall\, {\bf x}, {\bf y} \in {\mathfrak X}$ and $\forall \alpha \in {\mathbb R}$ we have

- ${ \hspace{-.15cm} {
 m \emph{9}}} \hspace{.15cm} {
 m {
 m \emph{x}}} + {
 m {
 m \emph{y}}} \in \mathfrak{X}$ (Addition)
- **9** $\alpha \mathbf{x} \in \mathcal{X}$ (Multiplication)

Examples:

- \checkmark Rational numbers $\mathbb Q$ over the rational field
- $ot \hspace{-1.5pt}$ Real numbers $\mathbb R$
- \checkmark Also true for \mathbb{R}^n

Counterexamples:

- $f : [0,1] \rightarrow [0,1]$ does not form a vector space!
- \checkmark $\ensuremath{\mathbb{Z}}$ is not a vector space over the real field
- The alphabet $\{a, \ldots, z\}$ is not a vector space! (How do you define + and × operators?)

Normed Space:

A pair $(\mathfrak{X}, \|\cdot\|)$, where \mathfrak{X} is a vector space and $\|\cdot\| : \mathfrak{X} \to \mathbb{R}_0^+$ is a normed space if $\forall \mathbf{x}, \mathbf{y} \in \mathfrak{X}$ and all $\alpha \in \mathbb{R}$ it satisfies

$$\| \mathbf{x} \| = 0$$
 if and only if $\mathbf{x} = 0$

$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 (Scaling)

 $\mathbf{P} \| \mathbf{x} + \mathbf{y} \| \leq \| \mathbf{x} \| + \| \mathbf{y} \|$ (Triangle inequality)

A norm not satisfying the first condition is called a pseudo norm

Norm and Metric:

A norm induces a metric via $d(\mathbf{x},\mathbf{y}) := \parallel \mathbf{x} - \mathbf{y} \parallel$

Banach Space:

A complete (in the metric defined by the norm) vector space ${\mathcal X}$ together with a norm $\|\cdot\|$

Inner Product Space:

A pair $(\mathfrak{X}, \langle \cdot, \cdot \rangle_{\mathfrak{X}})$, where \mathfrak{X} is a vector space and $\langle \cdot, \cdot \rangle : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ is a inner product space if $\forall \mathbf{x}, \mathbf{y} \mathbf{z} \in \mathfrak{X}$ and all $\alpha \in \mathbb{R}$ it satisfies

$$\mathbf{P} \langle \mathbf{x}, \mathbf{y} \rangle = 0 \quad \forall \mathbf{y} \implies \mathbf{x} = 0$$

Dot Product and Norm:

A dot product induces a norm via $\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$

Hilbert Space:

A complete (in the metric induced by the dot product) vector space \mathcal{X} , endowed with a dot product $\langle \cdot, \cdot \rangle$

Hilbert Spaces: Examples

Euclidean Spaces:

Take \mathbb{R}^m endowed with the dot product $\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{i=1}^m x_i y_i$

ℓ_2 Spaces:

Infinite series of real numbers

 \checkmark We define a dot product as $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$

Function Spaces $L_2(\mathfrak{X})$:

- A function is square integrable if $\int |f(x)|^2 dx < \infty$
- For square integrable functions $f, g : X → \mathbb{R}$ define
 $\langle f, g \rangle := \int_X f(x)g(x)dx$

Polarization Inequality:

To recover the dot product from the norm compute $\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{y} \rangle$

Positive Definite Matrix:

A matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^m$ we have

 $\mathbf{x}^{\top} M \mathbf{x} \ge 0 \text{ if } \mathbf{x} \ne 0$

This matrix has only positive eigenvalues since for all eigenvectors \mathbf{x} we have $\mathbf{x}^{\top} M \mathbf{x} = \lambda \mathbf{x}^{\top} \mathbf{x} = \lambda \| \mathbf{x} \|^2 > 0$ and thus $\lambda > 0$.

Induced Norms and Metrics:

Every positive definite matrix induces a norm via

$$\|\mathbf{x}\|_M^2 := \mathbf{x}^\top M \mathbf{x}$$

The triangle inequality can be seen by writing

$$\|\mathbf{x} + \mathbf{x}'\|_{M}^{2} = (\mathbf{x} + \mathbf{x}')^{\top} M^{\frac{1}{2}} M^{\frac{1}{2}} (\mathbf{x} + \mathbf{x}') = \|M^{\frac{1}{2}} (\mathbf{x} + \mathbf{x}')\|^{2}$$

and using the triangle inequality for $M^{\frac{1}{2}}\mathbf{x}$ and $M^{\frac{1}{2}}\mathbf{x}'$.

Our Setting

Notation:

- ▶ Let \mathcal{X} a learning domain and $\mathbb{R}^{\mathcal{X}} := \{f : \mathcal{X} \to \mathbb{R}\}.$
- ${}_{{}_{\!\!\!\!\!\!}}$ Hypothesis set ${}_{\!\!\!\!\!\!}\mathcal{H}\subset \mathbb{R}^{\chi}$

What We Want:

- \checkmark There are many nasty functions in $\mathbb{R}^{\mathcal{X}}$
- We restrict our attention to nice hypothesis sets
- We want to *learn* a function which is *smooth*

Restriction:

We look at functions of the form

$$\mathcal{H}_0 = \{ f(\mathbf{x}) = \sum_{i \in I} \alpha_i k(\mathbf{x}, \mathbf{x}_i), \mathbf{x}_i \in \mathcal{X}, \alpha_i \in \mathbb{R} \}$$

 \checkmark I is an index set and $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ is a kernel function

Definition:

• Let
$$g(\mathbf{x}) = \sum_{j \in J} \beta_j k(\mathbf{x}, \mathbf{x}_j)$$
 then
 $\langle f, g \rangle_{\mathcal{H}_0} := \sum_{i,j} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{x}_j)$

Properties:

- If k is symmetric then $\langle f, g \rangle_{\mathcal{H}_0} = \langle g, f \rangle_{\mathcal{H}_0}$
- If k is a positive semi definite then $(f, f)_{H_0} ≥ 0$

Completion:

- In order to obtain a Hilbert space \mathcal{H} complete \mathcal{H}_0
- $\ \, \bullet \ \, (\cdot,\cdot)_{\mathcal{H}_0} \text{ is } naturally \text{ extended to } \langle \cdot,\cdot \rangle_{\mathcal{H}}$

RKHS

Definition:

9 For every $f \in \mathcal{H}$ if there is a k such that

$$\langle f(.), k(., \mathbf{x}) \rangle_{\mathcal{H}} = f(\mathbf{x})$$

then ${\mathcal H}$ is called a Reproducing Kernel Hilbert Space

Evaluation Functional:

A linear functional which maps f to $f(\mathbf{x})$

$$\delta_{\mathbf{x}}(f) := f(\mathbf{x})$$

Observe that δ_x is linear

Theorem:

 $If (\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}}) is a RKHS \iff \delta_{\mathbf{x}} is continuous$

9 Equivalently $\delta_{\mathbf{x}}$ is bounded i.e.

$$\forall \, \mathbf{x} \, \exists M_{\mathbf{x}} \, \forall f \quad |f(\mathbf{x})| \leq M_{\mathbf{x}} ||f||_{\mathcal{H}}$$

Matrices:

Let X = {1,...,d}, f(i) = f_i ℋ = ℝ^d, ⟨f,g⟩_ℋ =

$$f^T Mg, M \succeq 0$$

 f = KMf and K = M⁻¹

n^{th} -Order Polynomials:

● Let
$$\mathfrak{X} = [a, b], \ \mathfrak{H} = \tau_n[a, b]$$
. Define
 $\langle f, g \rangle_{\mathfrak{H}} := \sum_{i=0}^n f^{(i)}(c)g^{(i)}(c) \text{ for } c \in [a, b]$

then

$$k(x,y) = \sum_{i=0}^{n} \frac{(x-c)^{i}}{i!} \frac{(y-c)^{i}}{i!}$$

General Recipe

Define Γ_x :

Define Γ :

Using the pointwise limit above define

$$\Gamma(f) := g$$

Define a RKHS:

> Now let $\mathcal{H} = \operatorname{image}(\Gamma)$ and observe

$$|g(\mathbf{x})| = |\langle c_{\mathbf{x}}, f \rangle_{L_2}| \le ||c_{\mathbf{x}}||_{L_2} \cdot ||f||_{L_2}$$

The kernel is

$$k(\mathbf{x}, \mathbf{y}) = \langle c_{\mathbf{x}}, c_{\mathbf{y}} \rangle_{L_2}$$

Statement:

Let $k \in L_{\infty}(\mathfrak{X}^2)$ be the kernel of a linear operator

$$\begin{array}{rcl} T_k & : & L_2(\mathfrak{X}) \to L_2(\mathfrak{X}) \\ (T_k f)(\mathbf{x}) & := & \int_{\mathfrak{X}} k(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mu_{\mathbf{y}} \end{array}$$

such that

$$\int_{\mathfrak{X}^2} k(\mathbf{x}, \mathbf{y}) f(\mathbf{x}) f(\mathbf{y}) d\mu_{\mathbf{y}} \, d\mu_{\mathbf{x}} \ge 0.$$

Let (ψ_j, λ_j) be the normalized eigensystem of k then • $\lambda_j \in \ell_1$

Almost everywhere

$$k(\mathbf{x}, \mathbf{y}) = \sum_{j} \lambda_{j} \psi_{j}(\mathbf{x}) \psi_{j}(\mathbf{y})$$

RKHS from Mercer's Theorem

Construction:

• We define
$$\mathcal{H} := \{\sum_i c_i \psi_i(\mathbf{x})\}$$
 and

$$\langle f,g\rangle_{\mathcal{H}} := \sum_{i} \frac{c_i d_i}{\lambda_i}$$

where ψ_i are eigenfunctions and λ_i are eigenvalues of k

Validity:

Interpretent the series c_i^2/λ_i must converge to 0

Reproducing Property:

We can check

$$\langle f(\cdot), k(\cdot, \mathbf{x}) \rangle_H = \sum_i c_i \lambda_i \psi_i(\mathbf{x}) / \lambda_i$$

= $\sum_i c_i \psi_i(\mathbf{x}) = f(\mathbf{x})$

Kernels in Practice

Intuition:

- Kernels are measures of similarity
- By the reproducing property

$$\langle k(\cdot,\mathbf{x}),k(\cdot,\mathbf{y})\rangle_{\mathcal{H}}=k(\mathbf{x},\mathbf{y})$$

They define a dot product via the map

$$\begin{aligned} \phi &: \mathfrak{X} \ \to \ \mathfrak{H} \\ \mathbf{x} \ \mapsto \ k(\cdot, \mathbf{x}) &:= \phi(\mathbf{x}) \end{aligned}$$

Why is this Interesting:

- So assumption about the input domain \mathcal{X} !!
- $\textbf{ Meaningful dot products in } \mathcal{X} \implies \text{ we are in business }$
- Served methods successfully applied for discrete data
- Strings, trees, graphs, automata, transducers etc.

Kernels and Nonlinearity

Problem: Linear functions are often too simple to provide good estimators

- Idea 1: Map to a higher dimensional feature space via $\Phi : \mathbf{x} \to \Phi(\mathbf{x})$ and solve the problem there Replace every $\langle \mathbf{x}, \mathbf{y} \rangle$ by $\langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$
- Idea 2: Instead of computing $\Phi(\mathbf{x})$ explicitly use a kernel function $k(\mathbf{x}, \mathbf{y}) := \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$
- A large class of functions are admissible as kernels
- Non-vectorial data can be handled if we can compute meaningful $k(\mathbf{x}, \mathbf{y})$



Gaussian Kernel:

 \checkmark Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and $\sigma^2 \in \mathbb{R}^+$ then

$$k(\mathbf{x}, \mathbf{y}) := \exp\left(\frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma^2}\right)$$

Polynomial Kernel:

Let
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$
 and $d \in \mathbb{N}$ then

$$k(\mathbf{x}, \mathbf{y}) := (\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\sigma^2} + 1)^d$$

Computes all monomials up to degree d

String Kernel:

J Let $x, y \in A^*$ and w_s be weights

$$k(x,y) := \sum_{s \sqsubseteq x, s' \sqsubseteq y} w_s \delta_{s,s'} = \sum_{s \in \mathcal{A}^*} \#_s(x) \#_s(y) w_s$$

Occams Razor:

Of all functions which explain data pick the simplest one

Simple Functions:

We need a way to characterize a simple function

J Low function norm in RKHS \implies smooth function

Regularization:

To encourage simplicity we minimize

$$f_s = \operatorname{argmin}_{f \in H} \frac{1}{m} \sum_{i=1}^m c(f(\mathbf{x}_i), y_i) + \lambda ||f||_H^2$$

- \checkmark $c(\cdot, \cdot)$ is any loss function
- **9** λ is a trade-off parameter

Statement:

Let $c : (X × ℝ × ℝ)^m → ℝ ∪ \{∞\}$ denote a loss function

● Let $\Omega : [0, \infty) \to \mathbb{R}$ be a strictly increasing function

The objective function (regularized risk) is

 $c((\mathbf{x}_1, \mathbf{y}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_m, \mathbf{y}_m, f(\mathbf{x}_m))) + \Omega(||f||_H)$

Sector Secto

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

- \checkmark The solution is the span of m particular kernels
- **J** Those points for which $\alpha_i > 0$ are Support Vectors

Proof

Sketch:

- $\textbf{ Replace } \Omega(||f||_{\mathcal{H}}) \text{ by } \bar{\Omega}(||f||_{\mathcal{H}}^2))$
- Decompose f as

$$f(\mathbf{x}) = f_{||}(\mathbf{x}) + f_{\perp}(\mathbf{x}) = \sum_{i} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}) + f_{\perp}(\mathbf{x})$$

Since
$$\langle f_{\perp}, k(\mathbf{x}_i, \cdot) \rangle = 0$$
 we have
$$f(\mathbf{x}_j) = \sum_i \alpha_i k(\mathbf{x}_i, \mathbf{x}_j)$$

Now observe that

$$\Omega(||f||_{\mathcal{H}}) \ge \bar{\Omega}\left(||\sum_{i} \alpha_{i} k(\mathbf{x}_{i}, \cdot)||_{\mathcal{H}}^{2}\right)$$

. The objective function is minimized when $f_{\perp} = 0$

Adjoint Operator:

Linear operators T and T^* are adjoint if

$$\langle Tf,g\rangle = \langle f,T^*g\rangle$$

A differential operator is a linear operator

Green's Function:

Let L linear and k be the kernel of an integral operator
If $Lk(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{x} - \mathbf{y})$ then k is the Green's function of L

Intuition:

- **9** Given f and Lu = f find u
- Interpretation of L^{-1}
- **9** You can verify $u = L^{-1}f$ since

$$LL^{-1}f(\mathbf{x}) = L\int k(\mathbf{x}, \mathbf{y})f(\mathbf{y})d\,\mathbf{y} = \int \delta(\mathbf{x} - \mathbf{y})f(\mathbf{y})d\,\mathbf{y} = f(\mathbf{x} - \mathbf{y})f(\mathbf{y})d\,\mathbf{y} = f(\mathbf{y} - \mathbf{y})f(\mathbf{y})d\,\mathbf{y}$$

Objective Function:

- Suppose L is the linear differential operator
- We impose smoothing by minimizing

$$c((\mathbf{x}_1, \mathbf{y}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_m, \mathbf{y}_m, f(\mathbf{x}_m))) + ||Lf||_{L_2}^2$$

Define a RKHS:

- Define \mathcal{H} as the completion of $\mathcal{H}_0 = \{f \in L^*LL_2 : ||Lf||_{L_2} < \infty\}$
- The dot product is defined as

$$\langle f,g \rangle_{\mathcal{H}} := \langle Lf, Lg \rangle_{L_2}$$

Scenis function of L^*L is a reproducing kernel for \mathcal{H}

Generalization:

Let L be any linear mapping into a dot product space

Fourier Transform

Definition:

● For $f : \mathbb{R}^n \to \mathbb{R}$ the Fourier transform is

$$\tilde{\mathbf{f}}(\omega) = (2\pi)^{\frac{n}{2}} \int f(\mathbf{x}) \exp(-i\langle \omega, \mathbf{x} \rangle) d\,\mathbf{x}$$

and the inverse Fourier transform is

$$f(\mathbf{x}) = (2\pi)^{\frac{n}{2}} \int \tilde{\mathbf{f}}(\omega) \exp(i\langle\omega, \mathbf{x}\rangle) d\omega$$

Parseval's Theorem:

 \checkmark For a function f we have $\langle f, f \rangle_{L_2} = \langle \tilde{\mathbf{f}}, \tilde{\mathbf{f}} \rangle_{L_2}$

Properties:

. For function f and differential operator L we have

$$||Lf||^{2} = (2\pi)^{-\frac{n}{2}} \int \frac{|\tilde{\mathbf{f}}|^{2}}{\mu(\omega)} d\omega$$

Green's Function

Dot Products:

- We define $\mathcal{H}_0 = \{f: ||Lf||^2 < \infty\}$
- The dot product is defined as

$$\langle f,g \rangle_{\mathcal{H}_0} = (2\pi)^{-\frac{n}{2}} \int \frac{\mathbf{f}(\omega) \, \widetilde{}(\omega) \, \mathbf{g}}{\mu(\omega)} d\omega$$

In the RKHS H is the completion of H_0

Green's Function:

Solution We guess the Green's function (kernel) for L^*L as

$$k(\mathbf{x}, \mathbf{y}) = (2\pi)^{-\frac{n}{2}} \int \exp(i\langle \omega, \mathbf{x} - \mathbf{y} \rangle) \mu(\omega) d\omega$$

Verify that

$$\tilde{k}(\cdot, \mathbf{x}) = \mu(\omega) \exp(-i\langle \omega, \mathbf{x} \rangle)$$

Questions?

