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Machine Learning
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Data:
Pairs of observations (xi, yi)

Underlying distribution P(x, y)

Examples (blood status, cancer), (transactions, fraud)

Task:
Find a function f (x) which predicts y given x

The function f (x) must generalize well



What Are Kernels?
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Problem:
Pairs of observations (xi, yi)

We want to decide the label of point x

Intuition:
If k(x,xi) is a measure of influence then

y(x) =
∑
i

k(x,xi)yi



Linear Functions?
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General Form:
We typically want to use functions of the form

f (x) = Λ(〈φ(x), θ〉 − g(θ))

We map data to φ(x) and then apply Λ to output function

Special Cases:
For Linear Regression Λ = 1

For classification use Λ = sign

For density estimation use Λ = exp

The RKHS Connection:
We need a way to tie this to kernels
The RKHS setting is suited for this purpose
We implicitly map data to a high dimensional space



Vector Spaces
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Vector Space:
A set X such that ∀x,y ∈ X and ∀α ∈ R we have

x+y ∈ X (Addition )
αx ∈ X (Multiplication )

Examples:
Rational numbers Q over the rational field
Real numbers R
Also true for Rn

Counterexamples:

f : [0, 1] → [0, 1] does not form a vector space!
Z is not a vector space over the real field
The alphabet {a, . . . , z} is not a vector space! (How do
you define + and × operators?)



Banach Spaces
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Normed Space:
A pair (X, ‖·‖), where X is a vector space and ‖·‖ : X → R+

0
is a normed space if ∀x,y ∈ X and all α ∈ R it satisfies

‖x ‖ = 0 if and only if x = 0

‖αx ‖ = |α|‖x ‖ (Scaling )
‖x+y ‖ ≤ ‖x ‖ + ‖y ‖ (Triangle inequality )

A norm not satisfying the first condition is called a pseudo
norm

Norm and Metric:
A norm induces a metric via d(x,y) := ‖x−y ‖

Banach Space:
A complete (in the metric defined by the norm) vector
space X together with a norm ‖ · ‖



Hilbert Spaces
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Inner Product Space:
A pair (X, 〈·, ·〉X), where X is a vector space and 〈·, ·〉 :
X×X → R is a inner product space if ∀x,y z ∈ X and all
α ∈ R it satisfies

〈x+y, z〉 = 〈x, z〉 + 〈y, z〉 (Additivity )
〈αx,y〉 = α〈x,y〉 (Linearity )
〈x,y〉 = 〈y,x〉 (Symmetry )
〈x,x〉 ≥ 0

〈x,y〉 = 0 ∀y =⇒ x = 0

Dot Product and Norm:
A dot product induces a norm via ‖x ‖ :=

√
〈x,x〉

Hilbert Space:
A complete (in the metric induced by the dot product) vec-
tor space X, endowed with a dot product 〈·, ·〉



Hilbert Spaces: Examples
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Euclidean Spaces:
Take Rm endowed with the dot product 〈x,y〉 :=

∑m
i=1 xiyi

`2 Spaces:
Infinite series of real numbers
We define a dot product as 〈x,y〉 =

∑∞
i=1 xiyi

Function Spaces L2(X):
A function is square integrable if

∫
|f (x)|2dx <∞

For square integrable functions f, g : X → R define
〈f, g〉 :=

∫
X f (x)g(x)dx

Polarization Inequality:
To recover the dot product from the norm compute
‖x+y ‖2 − ‖x ‖2 − ‖y ‖2 = 2〈x,y〉



Positive Matrices
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Positive Definite Matrix:
A matrix M ∈ Rm×m for which for all x ∈ Rm we have

x>M x ≥ 0 if x 6= 0

This matrix has only positive eigenvalues since for all
eigenvectors x we have x>M x = λx> x = λ‖x ‖2 > 0
and thus λ > 0.

Induced Norms and Metrics:
Every positive definite matrix induces a norm via

‖x ‖2
M := x>M x

The triangle inequality can be seen by writing

‖x+x′ ‖2
M = (x+x′)>M

1
2M

1
2(x+x′) = ‖M

1
2(x+x′)‖2

and using the triangle inequality for M
1
2 x and M

1
2 x′.



Our Setting
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Notation:
Let X a learning domain and RX := {f : X → R}.

Hypothesis set H ⊂ RX

What We Want:
There are many nasty functions in RX

We restrict our attention to nice hypothesis sets
We want to learn a function which is smooth

Restriction:
We look at functions of the form

H0 = {f (x) =
∑
i∈I

αik(x,xi),xi ∈ X, αi ∈ R}

I is an index set and k : X×X → R is a kernel function



Making Dot Products
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Definition:
Let g(x) =

∑
j∈J βjk(x,xj) then

〈f, g〉H0 :=
∑
i,j

αiβjk(xi,xj)

Properties:
If k is symmetric then 〈f, g〉H0 = 〈g, f〉H0

If k is a positive semi definite then 〈f, f〉H0 ≥ 0

Completion:
(H0, 〈·, ·〉H0) defines a dot-product space
In order to obtain a Hilbert space H complete H0

〈·, ·〉H0 is naturally extended to 〈·, ·〉H



RKHS
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Definition:
For every f ∈ H if there is a k such that

〈f (.), k(.,x)〉H = f (x)

then H is called a Reproducing Kernel Hilbert Space

Evaluation Functional:
A linear functional which maps f to f (x)

δx(f ) := f (x)

Observe that δx is linear

Theorem:
If (H, 〈·, ·〉H) is a RKHS ⇐⇒ δx is continuous
Equivalently δx is bounded i.e.

∀x ∃Mx ∀f |f (x)| ≤Mx||f ||H



Constructing Kernels

S.V.N. “Vishy” Vishwanathan: Kernels, Page 14

Matrices:
Let X = {1, . . . , d}, f (i) = fi H = Rd, 〈f, g〉H =
f>Mg, M � 0

f = KMf and K = M−1

nth-Order Polynomials:
Let X = [a, b], H = τn[a, b]. Define

〈f, g〉H :=

n∑
i=0

f (i)(c)g(i)(c) for c ∈ [a, b]

then

k(x, y) =

n∑
i=0

(x− c)i

i!

(y − c)i

i!



General Recipe
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Define Γx:
Let cx ∈ L2(X). For f ∈ L2(X) define

Γx(f ) = 〈cx, f〉L2 := g(x)

Define Γ:
Using the pointwise limit above define

Γ(f ) := g

Define a RKHS:
Now let H = image(Γ) and observe

|g(x)| = |〈cx, f〉L2| ≤ ||cx||L2 · ||f ||L2

The kernel is
k(x,y) = 〈cx, cy〉L2



Mercer’s Theorem
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Statement:
Let k ∈ L∞(X2) be the kernel of a linear operator

Tk : L2(X) → L2(X)

(Tkf )(x) :=

∫
X

k(x,y)f (y)dµy

such that ∫
X2
k(x,y)f (x)f (y)dµy dµx ≥ 0.

Let (ψj, λj) be the normalized eigensystem of k then
λj ∈ `1
Almost everywhere

k(x,y) =
∑
j

λjψj(x)ψj(y)



RKHS from Mercer’s Theorem
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Construction:
We define H := {

∑
i ciψi(x)} and

〈f, g〉H :=
∑
i

cidi
λi

where ψi are eigenfunctions and λi are eigenvalues of k

Validity:
The series c2i/λi must converge to 0

Reproducing Property:
We can check

〈f (·), k(·,x)〉H =
∑
i

ciλiψi(x)/λi

=
∑
i

ciψi(x) = f (x)



Kernels in Practice
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Intuition:
Kernels are measures of similarity
By the reproducing property

〈k(·,x), k(·,y)〉H = k(x,y)

They define a dot product via the map

φ : X → H

x 7→ k(·,x) := φ(x)

Why is this Interesting:
No assumption about the input domain X !!
Meaningful dot products in X =⇒ we are in business
Kernel methods successfully applied for discrete data
Strings, trees, graphs, automata, transducers etc.



Kernels and Nonlinearity
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Problem: Linear functions are often too
simple to provide good estimators

Idea 1: Map to a higher dimensional
feature space via Φ : x → Φ(x) and
solve the problem there Replace ev-
ery 〈x,y〉 by 〈Φ(x),Φ(y)〉

Idea 2: Instead of computing Φ(x) ex-
plicitly use a kernel function
k(x,y) := 〈Φ(x),Φ(y)〉
A large class of functions are admis-
sible as kernels

Non-vectorial data can be handled if
we can compute meaningful k(x,y)



A Few Kernels
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Gaussian Kernel:
Let x,y ∈ Rd and σ2 ∈ R+ then

k(x,y) := exp

(
||x−y ||2

σ2

)
Polynomial Kernel:

Let x,y ∈ Rd and d ∈ N then

k(x,y) := (
〈x,y〉
σ2

+ 1)d

Computes all monomials up to degree d

String Kernel:
Let x, y ∈ A∗ and ws be weights

k(x, y) :=
∑

svx,s′vy
wsδs,s′ =

∑
s∈A∗

#s(x)#s(y)ws



Norms in RKHS
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Occams Razor:
Of all functions which explain data pick the simplest one

Simple Functions:
We need a way to characterize a simple function
Low function norm in RKHS =⇒ smooth function

Regularization:
To encourage simplicity we minimize

fs = argminf∈H
1

m

m∑
i=1

c(f (xi), yi) + λ||f ||2H

c(·, ·) is any loss function
λ is a trade-off parameter



Representer Theorem

S.V.N. “Vishy” Vishwanathan: Kernels, Page 22

Statement:
Let c : (X×R×R)m → R∪{∞} denote a loss function
Let Ω : [0,∞) → R be a strictly increasing function
The objective function (regularized risk) is

c((x1,y1, f(x1)), . . . , (xm,ym, f(xm))) + Ω(||f ||H)

Each minimizer f ∈ H of the above admits a represen-
tation

f (x) =

m∑
i=1

αik(xi,x)

The solution is the span of m particular kernels
Those points for which αi > 0 are Support Vectors



Proof
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Sketch:
Replace Ω(||f ||H) by Ω̄(||f ||2H))

Decompose f as

f (x) = f||(x) + f⊥(x) =
∑
i

αik(xi,x) + f⊥(x)

Since 〈f⊥, k(xi, ·)〉 = 0 we have

f (xj) =
∑
i

αik(xi,xj)

Now observe that

Ω(||f ||H) ≥ Ω̄

(
||
∑
i

αik(xi, ·)||2H

)
The objective function is minimized when f⊥ = 0



Green’s Function
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Adjoint Operator:
Linear operators T and T ∗ are adjoint if

〈Tf, g〉 = 〈f, T ∗g〉
A differential operator is a linear operator

Green’s Function:
Let L linear and k be the kernel of an integral operator
If Lk(x,y) = δ(x−y) then k is the Green’s function of L

Intuition:
Given f and Lu = f find u
The Green’s function is the kernel of L−1

You can verify u = L−1f since

LL−1f (x) = L

∫
k(x,y)f (y)dy =

∫
δ(x−y)f (y)dy = f (x)



Kernels are Green’s Function
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Objective Function:
Suppose L is the linear differential operator
We impose smoothing by minimizing

c((x1,y1, f(x1)), . . . , (xm,ym, f(xm))) + ||Lf ||2L2

Define a RKHS:
Define H as the completion of H0 = {f ∈ L∗LL2 :
||Lf ||L2 <∞}
The dot product is defined as

〈f, g〉H := 〈Lf, Lg〉L2

Green’s function of L∗L is a reproducing kernel for H

Generalization:
Let L be any linear mapping into a dot product space



Fourier Transform
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Definition:
For f : Rn → R the Fourier transform is

f̃(ω) = (2π)
n
2

∫
f (x) exp(−i〈ω,x〉)dx

and the inverse Fourier transform is

f (x) = (2π)
n
2

∫
f̃(ω) exp(i〈ω,x〉)dω

Parseval’s Theorem:
For a function f we have 〈f, f〉L2 = 〈f̃ , f̃〉L2

Properties:
For function f and differential operator L we have

||Lf ||2 = (2π)−
n
2

∫
| f̃ |2

µ(ω)
dω



Green’s Function
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Dot Products:
We define H0 = {f : ||Lf ||2 <∞}
The dot product is defined as

〈f, g〉H0 = (2π)−
n
2

∫
f̃(ω) ¯˜(ω)g

µ(ω)
dω

The RKHS H is the completion of H0

Green’s Function:
We guess the Green’s function (kernel) for L∗L as

k(x,y) = (2π)−
n
2

∫
exp(i〈ω,x−y〉)µ(ω)dω

Verify that

k̃(·,x) = µ(ω) exp(−i〈ω,x〉)



Questions?
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