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NATIONAL

® (Really Really) Quick Review of Basics
® Functional Analysis Viewpoint of RKHS

» Evaluation Functional
» Kernels and RKHS
® Mercer's Theorem

® Properties of Kernels

» Positive Semi-Definiteness
# Constructing Kernels of RKHS

® Regqularization

# Norm in a RKHS
» Representer Theorem
» Fourier Perspective
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Data:

® Pairs of observations (x;, ;)

#® Underlying distribution P(x, y)

® Examples (blood status, cancer), (transactions, fraud)
Task:

#® Find a function f(x) which predicts y given x
® The function f(x) must generalize well
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Problem:
® Pairs of observations (x;, y;)
® \We want to decide the label of point x

Intuition:
® If k(x,x;) is a measure of influence then

i) = 3 klx. Xy,
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General Form:
® We typically want to use functions of the form

f(x) = A{o(x),0) — g(0))
® We map data to ¢(x) and then apply A to output function

Special Cases:
® For Linear Regression A =1

® For classification use A = sign
® For density estimation use A = exp

The RKHS Connection:
® We need a way to tie this to kernels

® The RKHS setting is suited for this purpose
® We implicitly map data to a high dimensional space
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Vector Space.:
A set X suchthatVx,y € X and Va € R we have
® x+y e X (Addition )
® ox € X (Multiplication )

Examples:
® Rational numbers Q over the rational field
® Real numbers R
® Also true for R"

Counterexamples:

® f:]0,1] — [0, 1] does not form a vector space!
® 7 is not a vector space over the real field

® The alphabet {a,...,z} is not a vector space! (How do
you define + and x operators?)
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Normed Space:

A pair (X, ||-||), where X is a vector space and ||-|| : X — R
is a normed space if Vx,y € X and all o € R it satisfies

® ||x|[=0ifandonlyifx =0
® Jax | = |al]| x| (Scaling )
® |x+y| <[ x|+ |y (Triangle inequality )

A norm not satisfying the first condition is called a pseudo
norm

Norm and Metric:
A norm induces a metricvia d(x,y) = || x —y ||

Banach Space:
A complete (in the metric defined by the norm) vector
space X together with a norm || - ||
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Inner Product Space:
A pair (X, (-,)x), where X is a vector space and (-,-) :
X x X — Ris ainner product space if Vx,yz € X and all
a € R it satisfies

® (x+vy,z)=(x,2z)+ (y,z) (Additivity )
® (ax,y) = ax,y) (Linearity )
® (x,y) = (y,x) (Symmetry )
® (x,x)>0
® (xy)=0 Vy = x=0
Dot Product and Norm:;
A dot product induces a norm via || x || := /(x, x)

Hilbert Space:
A complete (in the metric induced by the dot product) vec-
tor space X, endowed with a dot product (-, -)
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Euclidean Spaces:
Take R™ endowed with the dot product (x,y) := > | xy;

¢y Spaces:
® Infinite series of real numbers
® We define a dot product as (x,y) = > .~ zy;
Function Spaces Ly(X):
® A function is square integrable if [ |f(z)[*dz < oo
® For square integrable functions f, g : X — R define

(f.9) = [y f(@)g(z)dx

Polarization Inequality:
To recover the dot product from the norm compute

Ix+y I = lIx* = Iy I* = 2(xy)
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Positive Definite Matrix:
A matrix M € R"™ ™ for which for all x € R we have

x' Mx>0if x#0

This matrix has only positive eigenvalues since for all
eigenvectors x we have x' Mx = Ax'x = \|x|? > 0
and thus \ > 0.

Induced Norms and Metrics:
Every positive definite matrix induces a norm via

x5, =x' Mx
® The triangle inequality can be seen by writing
Ix+x' |2, = (x+x)" M Mi(x+x) = | M3 (x+x)|?
and using the triangle inequality for Mzxand M:x'.
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Notation:
® Let X alearning domain and R* := {f : X — R}.

® Hypothesis set 5 ¢ R*

What We Want:
® There are many nasty functions in R*
® \We restrict our attention to nice hypothesis sets
» We want to learn a function which is smooth

Restriction:
® We look at functions of the form

Ho={f(x) =) aik(x,x;),%; € X,0; € R}
el

® Jisanindexsetand k : X x X — R is a kernel function
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Definition:
® Letg(x) =2, 0ik(x,%;) then

<f7 g>J—f0 = Z &iﬁjkb(ia X])
i,

Properties:
® If k is symmetric then (f, 9)s¢, = (g, f) %,
® If k is a positive semi definite then (f, )5, > 0

Completion:
® (H,, (-, -)g,) defines a dot-product space
® In order to obtain a Hilbert space JH{ complete
® (- g is naturally extended to (-, -)
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Definition:
® Forevery f € H if there is a k such that

<f()7 k('vx»ﬂf — f(X>

then J{ is called a Reproducing Kernel Hilbert Space

Evaluation Functional:
® A linear functional which maps f to f(x)

ox(f) == f(x)
® Observe that o is linear

Theorem:
® If (K, (-,-)g) isa RKHS <= Jy is continuous
® Equivalently o4 is bounded i.e.
Vx MV [f(x)] < My | f]3
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Matrices:

®letX = {1,....d}, f(i) = £ H = R (f gdec =
fTMg,MtO

f=KMfand K = M~}

n™-Order Polynomials:
® lLet X = [a,b], H = 7,]a, b]. Define

fg}c—Zf c) for ¢ € [a, b

then
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Define I',:
® letc, € Ly(X). For f € Ly(X) define

FX(f> — <CX7 f>L2 = g(X)

Define I
® Using the pointwise limit above define
L(f) =g
Define a RKHS:
® Now let H = image(I") and observe
l9(x)] = [ex, Lo < llexl|r, - |[f1]L,

® The kernel is
k<X> Y> — <CX7 Cy>L2
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Statement:
® Letk € L(X?) be the kernel of a linear operator

Tk . LQ(:X:)—>L2(X>
L)) = [ k¥ F )y

0
such that

[ Fx. 1760 £ ¥ty o = 0

Let (¢, \;) be the normalized eigensystem of k then
» )\j € /4
» Almost everywhere

k(x,y) = Z A (%)Y;(y)
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Construction:
® We define I := {)> . c;¢yi(x) } and

<f7 g>fH = Z C;\Cfl

where 1); are eigenfunctions and \; are eigenvalues of k
Validity:
® The series c¢7/)\; must converge to 0
Reproducing Property:
® \We can check

O R E = Y ehivi(x)/ A

1

=) ci(x) = f(x)

1
S.V.N. “Vishy” Vishwanathan: Kernels, Page 17



Intuition:
® Kernels are measures of similarity

® By the reproducing property
<k(7 X)? k(a Y)>-'H — k(X, Y>

® They define a dot product via the map
o X - H
X = ]ﬁ(',X) = ¢(X>
Why is this Interesting:
®» No assumption about the input domain X !!
$® Meaningful dot products in X = we are in business
® Kernel methods successfully applied for discrete data
® Strings, trees, graphs, automata, transducers etc.
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Problem: Linear functions are often too
simple to provide good estimators

ldea 1. Map to a higher dimensional
feature space via ¢ : x — $(x) and
solve the problem there Replace ev-

ery (x,y) by (¢(x), ®(y))
ldea 2: Instead of computing ®(x) ex-
plicity use a kernel function

k(x,y) = (P(x), P(y))
® A large class of functions are admis-
sible as kernels

® Non-vectorial data can be handled if
we can compute meaningful k(x,y)
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Gaussian Kernel:
® letx,y € RYand 02 € R™ then

kX, y) = exp (ll x—y ||2>

o

Polynomial Kernel:
® letx,y € R?and d € N then

ko y) = (22X s

® Computes all monomials up to degree d

String Kernel:
® Letz,y € A" and w, be weights

k(fvy) = Z wsds,s’ — Z #s(x)#s(y)ws

sCa,s'Ly seA*
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Occams Razor:
® Of all functions which explain data pick the simplest one

Simple Functions:
® We need a way to characterize a simple function
® Low function norm in RKHS = smooth function

Regularization:
® To encourage simplicity we minimize

| 1 «
fo = argmingey — 3 e f(xi), yi) + N[ fI[3
1=1
® ¢(-,-)is any loss function
® ) is a trade-off parameter
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Statement:
®letc: (X xR xR)" — RU{co} denote a loss function

® let():|0,00) — R be a strictly increasing function
® The objective function (regularized risk) is

(X, ¥ f(x1))s oy (K Yo (X)) + QU] 1)

® Each minimizer f € H of the above admits a represen-
tation

f(x) = Z a;ik(x;, X)

® The solution is the span of m particular kernels
® Those points for which o; > 0 are Support Vectors
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Sketch:

® Replace Q(||f|[s) by Q|| fll5)
® Decompose f as

f(x) = fi(x) + fi(x Zozz x;,X) + f1(x)
® Since (fi, k(x;,-)) = 0 we have
= ZO(Z']{I(XZ',XJ')

® Now observe that

QI fllac) = €2 (IIZ% Xi, - ||J{>

® The objective function is minimized when f, =0
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Adjoint Operator:
® Linear operators 7' and 7™ are adjoint if

(Tf,g9)=1(f,T"g)

® A differential operator is a linear operator

Green’s Function:
® Let L linear and £ be the kernel of an integral operator

® If Lk(x,y) = 6(x —y) then k is the Green’s function of L

Intuition:
® Given fand Lu = f find u
® The Green’s function is the kernel of L1
® You can verify v = L™ f since

LI f(x) = L / kx, y)f3)dy = / S(x— y)f(y)dy = f(>
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Objective Function:
® Suppose L is the linear differential operator

® We impose smoothing by minimizing
c((x1, 1 F(X0))s -+ s (Xons Yoo £ (%)) + LI,

Define a RKHS:
® Define H as the completion of Hy = {f € L*LL, :
||Lf||L2 < OO}
® The dot product is defined as

<f7 g>f1‘f = <Lf7 Lg>L2
® Green’s function of L*L is a reproducing kernel for H

Generalization:
® Let L be any linear mapping into a dot product space
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Definition:
® For f: R" — R the Fourier transform is

|3

flw) = (2m)F [ £60) expl—i(w. x))dx
and the inverse Fourier transform is
£ = ()t [ Ew) expli(, )

Parseval’'s Theorem: o
® For afunction f we have (f, f);, = (f,f)],

Properties:
® For function f and differential operator L we have

T
LA = em |

u(w)dw
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Dot Products:
® We define Hy = {f : ||Lf||* < oo}

® The dot product is defined as

<f7 g>f]{0 — (27‘-)_% / f<W>N<ngw

® The RKHS H is the completion of H

Green’s Function:
® We guess the Green'’s function (kernel) for L*L as

k(x,y) = (2n)" / expli(w, x — y) ()
® Verify that
B %) = p(w) exp(—i{w, X))
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