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Estimators
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Formalizing the Inference Process
Given some data X drawn from a distribution p(x; θ), es-
timate the parameter θ via the mapping θ̂(X).

Unbiased Estimator
An unbiased estimator θ̂(X) of the parameters θ of the
distribution p(x; θ) satisfies

EX∼p(X;θ)[θ̂(X)] = θ

Theorem
The Maximum-Likelihood Estimator

θ̂(X) := argmax
θ

p(X ; θ)

is asymptotically unbiased.
Warning: MLE need not give good results necessarily.
Recall estimating probabilities for a dice.



Example: Normal Distribution
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Density Model

p(x; µ, Σ) =
1

(2π)n/2
√
|Σ|

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
Log-Likelihood

− log p(X ; µ, Σ) =

m∑
i=1

n

2
log 2π +

1

2
log |Σ| + 1

2
(xi − µ)>Σ−1(xi − µ)

∂µ − log p(X ; µ, Σ) =

m∑
i=1

Σ−1(µ− xi)

∂µ − log p(X ; µ, Σ) =

m∑
i=1

1

2
Σ−1 − 1

2
Σ−1(xi − µ)(xi − µ)>Σ−1

Hence µ = 1
m

∑m
i=1 xi and Σ = 1

m

∑m
i=1(xi − µ)(xi − µ)>.



Fisher Information and Efficiency
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Fisher Score
Vθ(x) := ∂θ log p(x; θ)

This tells us the influence of x on estimating θ. Its ex-
pected value vanishes, since

E [∂θ log p(X ; θ)] =

∫
p(X ; θ)∂θ log p(X ; θ)dX

= ∂θ

∫
p(X ; θ)dX = 0.

Fisher Information Matrix
It is the covariance matrix of the Fisher scores, that is

I := Cov[Vθ(x)]



Cramer Rao Theorem
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Efficiency
Covariance of estimator θ̂(X) rescaled by I:

e := det Cov[θ̂(X)]Cov[∂θ log p(X ; θ)]

Theorem
The efficiency for unbiased estimators is never better
(i.e. smaller) than 1. Equality is achieved for MLEs.

Proof (scalar case only)
By Cauchy-Schwartz we have(

Eθ

[
(Vθ(X)− Eθ [Vθ(X)])

(
θ̂(X)− Eθ

[
θ̂(X)

])])2

≤Eθ

[
(Vθ(X)− Eθ [Vθ(X)])2

]
Eθ

[(
θ̂(X)− Eθ

[
θ̂(X)

])2
]

= IB.



Cramer Rao Theorem
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Proof
At the same time, Eθ [Vθ(X)] = 0 implies that

Eθ

[
(Vθ(X)− Eθ [Vθ(X)])

(
θ̂(X)− Eθ

[
θ̂(X)

])]
=Eθ

[
Vθ(X)θ̂(X)

]2
=

(∫
p(X|θ)∂θp(X|θ)θ̂(X)dX

)
=∂θ

∫
p(X|θ)θ̂(X)dX = ∂θθ = 1.

Cautionary Note
This does not imply that not a biased estimator might
have lower variance.



The Exponential Family
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Definition
A family of probability distributions which satisfy

p(x; θ) = exp(〈φ(x), θ〉 − g(θ))

Details
φ(x) is called the sufficient statistics of x.
X is the domain out of which x is drawn (x ∈ X).
g(θ) is the log-partition function and it ensures that the
distribution integrates out to 1.

g(θ) = log

∫
X

exp(〈φ(x), θ〉)dx



Example: Binomial Distribution
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Tossing coins
With probability p we have heads and with probability 1−
p we see tails. So we have

p(x) = px(1− p)1−x where x ∈ {0, 1} =: X

Massaging the math

p(x) = exp log p(x)

= exp (x log p + (1− x) log(1− p))

= exp
(
〈(x, 1− x)︸ ︷︷ ︸

φ(x)

, (log p, log(1− p))︸ ︷︷ ︸
θ

〉
)

The Normalization Once we relax the restriction on θ ∈ R2

we need g(θ) which yields

g(θ) = log
(
eθ1 + eθ2

)



Example: Laplace Distribution
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Atomic decay
At any time, with probability θdx an atom will decay in
the time interval [x, x + dx] if it still exists. Consulting
your physics book tells us that this gives us the density

p(x) = θ exp(θx) where x ∈ [0,∞) =: X

Massaging the math

p(x) = exp
(
〈 −x︸︷︷︸

φ(x)

, θ〉 − − log θ︸ ︷︷ ︸
g(θ)

)



Example: Normal Distribution
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Engineer’s favorite

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
where x ∈ R =: X

Massaging the math

p(x) = exp

(
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
− 1

2
log(2πσ2)

)
= exp

(
〈(x, x2)︸ ︷︷ ︸

φ(x)

, θ〉 − µ2

2σ2
+

1

2
log(2πσ2)︸ ︷︷ ︸

g(θ)

)
Finally we need to solve (µ, σ2) for θ. Tedious algebra
yields θ2 := −1

2σ
−2 and θ1 := µσ−2. We have

g(θ) = −1

4
θ2

1θ
−1
2 +

1

2
log 2π − 1

2
log−2θ2



Example: Multinomial Distribution
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Many discrete events
Assume that we have disjoint events [1..n] =: X which all
may occur with a certain probability px.

Guessing the answer
Use the map φ : x → ex, that is, ex is an element of the
canonical basis (0, . . . , 0, 1, 0, . . .). This gives

p(x) = exp(〈ex, θ〉 − g(θ))

where the normalization is

g(θ) = log

n∑
i=1

exp(θi)



Benefits: Simple Estimation
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Likelihood of a set: Given X := {x1, . . . , xm} we get

p(X ; θ) =

m∏
i=1

p(xi; θ) = exp

(
m∑

i=1

〈φ(xi), θ〉 −mg(θ)

)
= exp (m(〈µ, θ〉 − g(θ)))

Here we set µ to the mean of the sufficient statistics

µ̂ =
1

m

m∑
i=1

φ(xi)

Maximum Likelihood
Derivative of the log-likelihood needs to vanish. This
yields

µ̂− ∂θg(θ) = 0



Benefits: Log-partition function is nice
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g(θ) generates moments:

Recall: g(θ) = log

∫
exp(〈φ(x), θ〉)

Taking the derivative wrt. θ we can see that

∂θg(θ) = Ex∼p(x;θ) [φ(x)]

∂2
θg(θ) = Covx∼p(x;θ) [φ(x)]

. . . and so on for higher order moments . . .
Corollary

g(θ) is convex
Practical Benefit

Solving the problem µ = ∂θg(θ) becomes easy.



Application: Laplace distribution
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Estimate the decay constant of an atom:
We use exponential family notation where

p(x; θ) = exp(〈(−x), θ〉 − (− log θ))

Computing µ
Since φ(x) = −x all we need to do is average over all
decay times that we observe.

Solving for Maximum Likelihood
The condition µ = ∂θg(θ) equates to µ = −1

θ. Solving for
θ yields

θ = −1

µ



Benefits: Maximum Entropy Estimate
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Entropy
Basically it’s the number of bits needed to encode a ran-
dom variable. It is defined as

H(p) =

∫
log p(x)p(x)dx where we set 0 log 0 := 0

Maximum Entropy Density
The density p(x) satisfying E[φ(x)] ≥ η with maximum
entropy is exp(〈φ(x), θ〉 − g(θ)).

Corollary
The most vague density with a given variance is the
Gaussian distribution.

Corollary
The most vague density with a given mean is the Lapla-
cian distribution.



Using it
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Observe Data
x1, . . . , xm drawn from distribution p(x|θ)

Compute Likelihood

p(X|θ) =

m∏
i=1

exp(〈φ(xi), θ〉 − g(θ))

Maximize it
Take the negative log and minimize, which leads to

∂θg(θ) =
1

m

m∑
i=1

φ(xi)

This can be solved analytically or (whenever this is im-
possible or we are lazy) by Newton’s method.



Priors
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Problems with Maximum Likelihood
With not enough data, parameter estimates will be bad.

Prior to the rescue
Often we know where the solution should be. So we
encode the latter by means of a prior p(θ).

Normal Prior
Simply set p(θ) ∝ exp(− 1

2σ2‖θ‖2).
Posterior

p(θ|X) ∝ exp

(
m∑

i=1

〈φ(xi), θ〉 − g(θ)− 1

2σ2
‖θ‖2

)
This leads to the optimization problem

1

m

m∑
i=1

φ(xi)−
1

mσ2
θ = ∂θg(θ)



Conjugate Priors
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Problem with Normal Prior
The posterior looks different from the likelihood. So
many of the Maximum Likelihood optimization algorithms
may not work ...

Idea
What if we had a prior which looked like additional data,
that is

p(θ|X) ∼ p(X|θ)

For exponential families this is easy. Simply set

p(θ|a) ∝ exp(〈θ, m0a〉 −m0g(θ))

Posterior

p(θ|X) ∝ exp

(
(m + m0)

(〈
mµ + m0a

m + m0
, θ

〉
− g(θ)

))
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