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This Week’s Topics
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Probability Theory Basics

Maximum Likelihood

Priors

Exponential Family



Probability
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Basic Idea
We have events in a space of possible outcomes. Then
P(X) tells us how likely is that an event x ∈ X will occur.

Basic Axioms
Pr(X) ∈ [0, 1] for all X ⊆ X
Pr(X) = 1

Pr (∪iXi) =
∑

i

Pr(Xi) if Xi ∩Xj = ∅ for all i 6= j

Simple Corollary

Pr(X ∪ Y ) = Pr(X) + Pr(Y ) − Pr(X ∩ Y )



Multiple Variables
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Two Sets
Assume that X and Y are a probability measure on the
product space of X and Y. Consider the space of events
(x,y) ∈ X× Y.

Independence
If x and y are independent, then for all X ⊂ X and Y ⊂ Y

Pr(X,Y ) = Pr(X) · Pr(Y ).

Dependence and Conditional Probability
Typically, knowing x will tell us something about y (think
regression or classification). We have

Pr(Y |X) Pr(X) = Pr(Y, X) = Pr(X|Y ) Pr(Y ).

Hence Pr(Y, X) ≤ min(Pr(X), Pr(Y )).
Bayes Rule Pr(X|Y ) = Pr(Y |X) Pr(X)

Pr(Y ) .



Examples
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How likely is it to have AIDS if the test says so?
Assume that roughly 0.1% of the population is infected.
The AIDS test reports positive for all infections.
The AIDS test reports positive for 1% healthy people.

We use Bayes rule to infer Pr(AIDS|test positive) via

Pr(Y |X) Pr(X)

Pr(Y )
=

Pr(Y |X) Pr(X)

Pr(Y |X) Pr(X) + Pr(Y |X\X) Pr(X\X)

= 1·0.001
1·0.001+0.01·0.999 = 0.091

Hence the probability of AIDS is only 9.1%!
Evidence from an Eye-Witness

A witness is 90% certain and there were 20 people at the
crime scene . . .

Pr(X|Y ) = 0.9·0.05
0.9·0.05+0.1·0.95 = 0.3213 = 32% now that’s a worry . . .



Inference
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Follow up on the AIDS test:
The doctor performs a, conditionally independent test
which has the following properties:

The second test reports positive for 90% infections.
The AIDS test reports positive for 5% healthy people.

Pr(T1, T2|Health) = Pr(T1|Health) Pr(T2|Health).

A bit more algebra reveals 0.01·0.05·0.999
0.01·0.05·0.999+1·0.9·0.001 = 0.357.

Graphical Representation:
Through the unknown variable Health the outcomes of
the two tests are coupled. We can view this via the fol-
lowing diagram:



Estimating Probabilities from Data
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Rolling a dice:
Roll the dice many times and count how many times
each side comes up. Then assign empirical probability
estimates according to the frequency of occurrence.

Maximum Likelihood for Multinomial Distribution:
We match the empirical probabilities via

Pr
emp

(i) = #occurrences of i
#trials

Proof: we want to estimate the parameter vector π ∈ Rn

Pr(X|π) =

m∏
j=1

Pr(Xj|π) =

n∏
i=1

π#i
i

Maximization subject to 0 ≤ πi and
∑

i πi = 1 proves the
claim.



Practical Example
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Priors to the Rescue
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Big Problem
Only sampling many times gets the parameters right.

Rule of Thumb
We need at least 10-20 times as many observations.

Priors
Often we know what we should expect. For instance as-
sume a Dirichlet distribution over π, that is

Pr(i|π) = πi and Pr(π) ∝
n∏

i=1

πui−1
i where ui > 0.

Bayes rule yields Pr(π|X) ∝
n∏

i=1

π#i+ui−1
i , which is maxi-

mized for πi = #occurrences of i+ui−1
#trials+

∑
j(uj−1) . For ui = 2 we obtain

the Laplace Rule for estimation of frequencies.



An Outlook
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Exponential Family
The multinomial distribution is a member of the exponen-
tial family where

Pr(i|π) = exp(〈ei, log π〉 − g(π))

Conjugate Prior
The Dirichlet prior is a conjugate prior for the multinomial
family, i.e. p(π) and p(π|X) have the same form.
Translation: automatic way of finding “nice” priors.

Maximum a Posteriori Estimates
We chose π to maximize p(π|X). This is also called the
maximum-a-posteriori estimate.



Density Estimation
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Data
Continuous valued random variables.

Naive Solution
Apply the bin-counting strategy to the continuum. That

is, we use the empirical density pemp(x) =
1

m

m∑
i=1

δ(x, xi).

Problem
There are no bins.

Parzen Windows
Smooth out pemp by convolving it with a kernel k(x, x′).
Here k(x, x′) satisfies∫

X

k(x, x′)dx′ = 1 for all x ∈ X.



Examples of Kernels
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Gaussian Kernel

k(x, x′) =
(
2πσ2

)n
2 exp

(
− 1

2σ2
‖x− x′‖2

)
Laplacian Kernel

k(x, x′) = λn2−n exp (−λ‖x− x′‖1)

Indicator Kernel

k(x, x′) = 1[−0.5,0.5](x− x′)

Important Issue
Width of the kernel is usually much more important than
type .



Gaussian Kernel
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Laplacian Kernel
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Laplacian Kernel
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Selecting the Kernel Width
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Goal
We need a method for adjusting the kernel width.

Problem
The likelihood keeps on increasing as we narrow the ker-
nels.

Reason
The likelihood estimate we see is distorted (we are being
overly optimistic through optimizing the parameters).

Possible Solution
Check the performance of the density estimate on an
unseen part of the data. This can be done e.g. by

Leave-one-out crossvalidation
Ten-fold crossvalidation



Crossvalidation
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Basic Idea
Compute p(X ′|θ(X\X ′)) for various subsets of X and av-
erage over the corresponding log-likelihoods.

Practical Implementation
Generate subsets Xi ⊂ X and compute the log-
likelihood estimate∑

i

log p(Xi|θ(X|\Xi))

Pick the parameter which maximizes the above estimate.
Special Case: Leave-one-out Crossvalidation

pX\xi
(xi) =

m

m− 1
pX(xi) −

1

m− 1
k(xi, xi)



Cross Validation
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Best Fit ( λ = 1.9)
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Application: Novelty Detection
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Goal
Find the least likely observations xi from a dataset X.
Alternatively, identify low-density regions, given X.

Idea
Perform density estimate pX(x) and declare all xi with
pX(xi) < p0 as novel.

Algorithm
Simply compute f (xi) =

∑
j k(xi, xj) for all i and sort ac-

cording to their magnitude.



Applications
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Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),
home alarm (furniture, temperature, windows, etc.)



Order Statistic of Densities
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Typical Data
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Outliers
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Watson-Nadaraya Estimator
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Goal
Given pairs of observations (xi, yi) with yi ∈ {±1} find
estimator for conditional probability Pr(y|x).

Idea
Use definition p(x, y) = p(y|x)p(x) and estimate both p(x)
and p(x, y) using Parzen windows. This yields

Pr(y = 1|x) =

∑
yi=1 k(xi, x)∑

i k(xi, x)
Equivalent Formulation

Picking y = 1 or y = −1 depends on the sign of

Pr(y = 1|x) − Pr(y = −1|x) =

∑
i yik(xi, x)∑
i k(xi, x)

Extension to Regression
Use the above with yi ∈ R for regression purposes.



Silverman’s Automatic Adjustment
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Problem
One ’width fits all’ does not work well whenever we have
regions of high and of low density.

Idea
Adjust width such that neighbors of a point are included
in the kernel at a point. More specifically, adjust range hi

to yield
hi =

r

k

∑
xj∈NN(xi,k)

‖xj − xi‖

where NN(xi, k) is the set of k nearest neighbors of xi

and r is typically chosen to be 0.5.
Result

State of the art density estimator, regression estimator
and classifier.



Nearest Neighbor Classifier
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Extension of Silverman’s trick
Use the density estimator for classification and regres-
sion.

Simplification
Rather than computing a weighted combination of labels
to estimate the label, use an unweighted combination
over the nearest neighbors.

Result
k-nearest neighbor classifier. Often used as baseline to
compare a new algorithm.

Nice Properties
Given enough data, k-nearest neighbors converges to
the best estimator possible (it is consistent).
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