Lecture 2 - Mathematical tools for machine learning

Advanced course in Statistical Machine Learning:
Theory and Applications
Stéphane Canu
stephane.canu@axiom.anu.edu.au asi.insa-rouen.fr/~scanu

National ICT of Australia
and
Australian National University

Overview

- vector spaces

- we are learning functions
\square defining norms and dot products arrouns these function
- a learning algo. provides a sequence of functions
- optimization
- learning is optimizing some criterion
- with some constrains
- probabilities
- statistical learning theory
- matrices
\square for practical reason they are evrywhere

(Real) vector space

$$
(\mathcal{F},+, \times)
$$

- a set \mathcal{F}
- an internal operation +

■ an external operation on $\mathbb{R}: \times$
required properties

1. $x+y=y+x$
2. $x+(y+z)=(x+y)+z$
3. $\forall x, y \in \mathcal{F}, \exists z \in \mathcal{F}$ such that $x+z=y$
4. $(\alpha \beta) \times x=\alpha(\beta \times x)$
5. $(\alpha+\beta) \times x=\alpha \times x+\beta \times x$
6. $\alpha(x+y)=\alpha x+\alpha y$
7. $1 \times x=x$

Examples of real vector space

1. the real numbers \mathbb{R}
2. the set of all finite collections of real numbers (a vector) \mathbb{R}^{n}
3. the set of sequences \mathbb{R}^{∞}
4. the set of sequences such that $\sum_{i=1}^{\infty} x_{i}^{2}<\infty$
5. the set of continous functions $C^{0}(\Lambda)$ on a domain $\Lambda \subset \mathbb{R}^{d}$
6. the set of infinitely derivable functions $C^{\infty}(\Lambda)$ defined on $\Lambda \subset \mathbb{R}$
7. the set of all polynomials \mathcal{P}

Not a real vector space

1. the rational numbers (but it is a V.S. over \mathbb{Q})
2. positive functions (defined through its domain)
3. $\{x<1\}$

Some properties of vectorial spaces

- basis

Distinguish the finite and the infinite case

- independence: A finite familly of vectors $\mathcal{B}=\left\{x_{1}, \ldots, x_{n}\right\}$ is independent if $\sum_{i=1}^{n} \alpha_{i} x_{i}=0 \Rightarrow \alpha_{i}=0$ for all i
- independence : An infinite familly of vectors \mathcal{B} is independant if all of its finite sub collections are independent
- span : the span of a familly of vectors is the set of all finite linear combinations of its members
- basis: A family of vectors \mathcal{B} is called a basis if it is independent and generative- $\operatorname{span\mathcal {B}}=\mathcal{F}$
\square vectorial sub space : the set spanned by some vectors
\square dimension : minimum number of elements to get a basis :
$\operatorname{dim}(E)=\operatorname{card}(\mathcal{B})$
\square finite - infinite - countable or not

distance and norm

Metric a two variable function from a set $\mathcal{F} \times \mathcal{F}$ into \mathbb{R}^{+}is a metric if it satisfies $\forall x, y \in \mathcal{F}$
$\square d(x, y)=0$ if and only if $x=y$
$\square d(x, y)=d(y, x)$
(symmetric)
$\square d(x, y) \leq d(x, z)+d(z, y)$
(Triangle inequality)
Metric space is a pair (\mathcal{F}, d), where \mathcal{F} is a set and d is a metric
Norm a Function from a vector space \mathcal{F} into \mathbb{R} is a norm if it satisfies
$\forall x \in \mathcal{F}$
■ $\|x\|=0$ if and only if $x=0$

- $\|\alpha x\|=|\alpha|\|x\|$
(Scaling)
- $\|x+y\| \leq\|x\|+\|y\|$
(Triangle inequality)
\rightarrow A norm not satisfying the first condition is called a pseudo norm Normed space is a pair $(\mathcal{F},\|\cdot\|)$, where \mathcal{F} is a vector space and $\|\cdot\|$ is a norm

$$
\text { A norm induces a metric via } d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|
$$

Example of distances and norms

$$
\begin{aligned}
x & =\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}=\mathcal{F} \\
\square & \|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right| \\
■ & \|x\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}} \\
\square & \|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p}, 1<p<\infty \\
\square & \|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}
\end{aligned}
$$

(city block distance)
(Euclidean)

Let's have a look at the unit balls : $\{x \mid\|x\| \leq 1\}$
$\mathcal{F}=C([\pi, \pi])$
$\square\|x\|_{1}=\int_{-\pi}^{\pi}|x(t)| d t$
$\square\|x\|_{2}=\sqrt{\int_{-\pi}^{\pi} x(t)^{2} d t}$
$\square\|x\|_{\infty}=\max _{t \in[\pi, \pi])}\{|x(t)|\}$
Let's have a look at the unit balls around function $\sin (t)$:

$$
\{x \mid\|x-\sin \| \leq 1\}
$$

convergenceS

\square a sequence $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ converge to x

- metric space

$$
\forall \varepsilon>0, \exists n_{0} \text { such that } \forall n>n_{0} \Rightarrow d\left(x_{n}, x\right) \leq \varepsilon
$$

- normed space
$\forall \varepsilon>0, \exists n_{0}$ such that $\forall n>n_{0} \Rightarrow\left\|x_{n}-x\right\| \leq \varepsilon$

$$
\lim _{n \rightarrow \infty} x_{n}=x \Rightarrow \lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0
$$

\square for functions a sequence $f_{1}(t), f_{2}(t), \ldots, f_{n}(t), \ldots$ converge to $f(t)$

- simple (no norm) - almost everywhere or pointwise

$$
\forall t \in \Lambda, \lim _{n \rightarrow \infty} f_{n}(t)=f(t)
$$

- unifom $\|f\|_{\infty}$

$$
\lim _{n \rightarrow \infty} \max _{t \in \Lambda}\left|f_{n}(t)-f(t)\right|=0
$$

Hilbert spaces and Scalar product

- scalar product a Function from a vector space $\mathcal{F} \times \mathcal{F}$ into \mathbb{R} is a Scalar product if it satisfies $\forall x, y \in \mathcal{F}$

$$
\begin{aligned}
&\langle x, x\rangle \geq 0 \\
&- \forall y,\langle x, y\rangle=0 \text { if and only if } x=0 \\
&\langle x, y\rangle=\langle y, x\rangle \\
&-\langle x, \alpha y+z\rangle=\alpha\langle x, y\rangle+\langle x, z\rangle
\end{aligned}
$$

\rightarrow A scalar product not satisfying the first condition is called an inner product

- induced norm $\|x\|:=\sqrt{\langle x, x\rangle}$ cool in the quadratic case : $\|x\|^{2}=\langle x, x\rangle$
- Hilbert space is a pair $(\mathcal{F},\langle\cdot, \cdot\rangle)$, where \mathcal{F} is a vector space, $\langle\cdot, \cdot\rangle$ is a scalar product and \mathcal{F} is complete with respect to the induced norm

Examples of Hilbert spaces

$\square \mathbb{R}^{n}$, (any finite dimensional v.s. Euclidian space)

- the set of square matrices of $\operatorname{dim} n$,
$\square \ell^{2}$ the set of square sumable sequences

$$
\begin{array}{r}
\langle x, y\rangle=x^{\top} y \\
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right) \\
\langle x, y\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}
\end{array}
$$

$\square \mathcal{P}_{k}$ the set of polynomials of order lower or equals to k,
$\square L^{2}(\Lambda)$, the set of square integrable functions $\quad\langle x, y\rangle=\int x(t) y(t) d t$

$$
\int_{\Lambda} f(t)^{2} d t<\infty
$$

Not a hilbert space
$\square L^{1}$

$$
\int_{\Lambda}|f(t)| d t<\infty
$$

\square the set of bounded functions L^{∞}
$■ \operatorname{Span}\left\{f\left(x_{i}\right), i \in \mathbb{N}\right\}$
(no scalar product)
(not complete)

When only the completion is missing, it is called pre-Hilbertian

How to "compare" objects

$\operatorname{map} \mathcal{F} \longrightarrow \mathbb{R}$ or $\mathcal{F} \times \mathcal{F} \longrightarrow \mathbb{R}$

- topology
- distance
- norm
- scalar product
convegence structure similarity size (enregy) correlation
- $\|x\|:=\sqrt{\langle x, x\rangle}$
- $d(x, y):=\|x-y\|$
- $\mathcal{B}_{x}(r):=\{y \mid d(x, y)<r\}$

■ $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle \quad=2(1-\langle x, y\rangle)$

- $|\langle x, y\rangle| \leq\|x\|\|y\|$
(Cauch Schwartz inequality)
measure \mathcal{F} objects through a map $\mathcal{F} \longrightarrow \mathbb{R}$ the set of all possible linear and continuous measures is the dual \mathcal{F}^{\prime} Example : what is the dual of \mathbb{R} ?

An important example : the evaluation functional

$\square f(t)$ have to mean something

$$
\begin{aligned}
f=g & \Rightarrow \forall t \in \Lambda, f(t)=g(t) \\
\delta_{t}: & \mathcal{F} \\
f & \longrightarrow \mathbb{R} \\
& f \longmapsto \delta_{t} f=f(t)
\end{aligned}
$$

$L^{2}(\Lambda)$ is not ok!

$$
\mathcal{F} \subset \mathbb{R}^{\Lambda}
$$

$\square \delta_{t}$ is a linear functional

$$
\delta_{t}(\alpha f+g)=\alpha f(t)+g(t)
$$

\square if it is continous, represent δ_{t} by a function $k_{t} \in \mathcal{F}$

$$
f(t)=\delta_{t} f=\left\langle f, k_{t}\right\rangle
$$

Learning is functional optimization

optimality principle

- convexity
- unicity of the solution
- efficent algorithms
- non convex
\square difficult problem
- minimization with constrains
- lagrangian

■KKT optimality conditions

Learning problems

in $x \in \mathbb{R}^{n}$

- objective function

$$
\begin{aligned}
& J: \mathcal{F} \longrightarrow \mathbb{R} \\
& f \\
& \longmapsto J(f)
\end{aligned}
$$

\square optimization (Weierstrass theorem) if Λ is compact, J derivable and convex :

$$
\min _{x \in \Lambda \subset \mathbb{R}^{n}} J(x) \quad \Leftrightarrow \quad \text { find } x^{*} \text { such that } \nabla J\left(x^{*}\right)=0
$$

\square equality constraints $\left\{\begin{array}{rl}\min _{x} & J(x) \\ \text { such that } & g_{i}(x)=0, \quad i=1, k\end{array} \quad\right.$ (Lagrange)
\square equality constraints $\left\{\begin{array}{rl}\min _{x} & J(x) \\ \text { such that } & g_{i}(x) \leq 0, \quad i=1, k\end{array}\right.$

- Both

convexity and derivatives

\square derivatives (finite case)
$\square f$ is not derivable : subdifferential at x (the set of subgradients)

$$
\partial J(x)=\left\{g \in \mathbb{R}^{n} \mid J(y) \geq J(x)+g^{\top}(y-x)\right\}
$$

■ convexity
$■$ convex set, let \mathcal{F} be a vector space, let $K \subset \mathcal{F}$. K is convex iff

$$
\forall \lambda \in[0,1], \forall x, y \in K, \text { we have } \lambda x+(1-\lambda) y \in K
$$

examples : unit ball, subdiffential...
■ convex function $f: \mathcal{F} \longrightarrow \mathbb{R}$

$$
\forall \lambda \in[0,1], \forall x, y \in \mathcal{F}, \text { we have } f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

examples : linear functions, $\exp ^{x}, x^{2}$, max, norms, log partition...
\square convex (set + objective + constraints) \Rightarrow unique solution exists

Optimization : functional derivative

\mathcal{F} a Hilbert space embeded with $\langle\cdot, \cdot\rangle$ and such that $f(t)=\left\langle f, k_{t}\right\rangle$

$$
\begin{aligned}
J: \mathcal{F} & \longrightarrow \mathbb{R} \\
f & \longmapsto J(f) \\
\min _{f \in \mathcal{F}} J(f) \Leftrightarrow \text { find } f^{*} & \text { such that } J^{\prime}\left(f^{*}\right)=0
\end{aligned}
$$

The gateau differential of the functional J in the direction g is the following limit if it exists

$$
d J(f, g)=\lim _{\alpha \rightarrow 0} \frac{J(f+\alpha g)-J(f)}{\alpha}
$$

example

$$
J(f)=\frac{1}{2} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\frac{\lambda}{2}\|f\|_{\mathcal{F}}^{2}
$$

Example of functional derivative

$\square J(f+\alpha g)=\frac{1}{2} \sum_{i=1}^{n}\left(f\left(x_{i}\right)+\alpha g\left(x_{i}\right)-y_{i}\right)^{2}+\frac{\lambda}{2}\|f+\alpha g\|^{2}$

- $\left(f\left(x_{i}\right)+\alpha g\left(x_{i}\right)-y_{i}\right)^{2}=\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\alpha^{2}\left(g\left(x_{i}\right)\right)^{2}+2 \alpha\left(f\left(x_{i}\right)-y_{i}\right) g\left(x_{i}\right)$
$\square\|f+\alpha g\|^{2}=\|f\|^{2}+\alpha^{2}\|g\|^{2}+2 \alpha\langle f, g\rangle$

$$
\begin{aligned}
\frac{J(f+\alpha g)-J(f)}{\alpha} & =\sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right) g\left(x_{i}\right)+\lambda\langle f, g\rangle+\underbrace{\alpha\left(\left(g\left(x_{i}\right)\right)^{2}+\lambda\|g\|^{2}\right.}_{\rightarrow 0} \\
& =\underbrace{\sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right) k_{x_{i}}+\lambda f}_{J^{\prime}(f)}, g\rangle
\end{aligned}
$$

$$
J^{\prime}(f)=0 \Leftrightarrow f(x)=\sum_{i=1}^{n} a_{i} k_{x_{i}}(x), a_{i}=\frac{1}{\lambda}\left(f\left(x_{i}\right)-y_{i}\right)
$$

minimizing with constraints : eliminate constraints

$$
\left\{\begin{array}{lll}
& \min _{x \in \mathbb{R}^{2}} & J(x) \\
\text { such that } & & A(x)=0
\end{array}\right.
$$

$$
\Leftrightarrow
$$

$\min _{x} \max _{\lambda} \mathcal{L}(x, \lambda) \quad$ Lagrangien

$$
\mathcal{L}(x, \lambda)=J(x)+\lambda A(x)
$$

$\left\{\begin{array}{l}\min _{x} J(x) \\ \text { such that } A(x) \leq 0\end{array} \Leftrightarrow\left\{\begin{array}{l}\nabla J(x)+\lambda^{\top} \nabla A(x)=0 \\ \lambda^{\top} A(x)=0, \quad \lambda>0\end{array} \quad\right.\right.$ KKT conditions
λ represents the importance of the constraint in the solution

minimizing with constraints : dual formulation

■ Optimality conditions : $x \in \mathbb{R}^{n}$

$$
\{\begin{array}{l}
\min _{x} J(x) \\
\text { such that } A(x)=0
\end{array} \Leftrightarrow\{\min _{x} \max _{\lambda} \underbrace{J(x)+\lambda^{\top} A(x)}_{\text {Lagrangian }}
$$

- Phase 1

$$
\nabla J(x)+\lambda^{\top} \nabla A(x)=0 \Leftarrow \quad \text { find a function } \Psi \text { such that } x=\Psi(\lambda)
$$

- phase $2: \lambda \in \mathbb{R}^{k}$

$$
\max _{\lambda} J(\Psi(\lambda))+\lambda^{\top} A(\Psi(\lambda))
$$

■ exemple $J(x)=x_{1}^{2}-x_{2}$ and $A(x)=x_{1}^{2}+x_{2}^{2}-1$

Probability

\square set of events Ω : is it countable or not (discrete or continuous)
\square discrete case : probability $\mathbb{P}(\omega)$
\square continuous case : $\mathbb{P}(\omega)=0$!
$\square \mathbb{P}($ subset $)$, e.g. $\Omega=\mathbb{R}, \quad F(x)=\mathbb{P}(\omega<x) \quad$ cumulative function

- no probability but density $f(x)=F^{\prime}(x)$
- unified vue : measure

$$
d \mu(x)= \begin{cases}\mathbb{P}(x) & \text { discrete case : probability } \\ f(x) d x & \text { continuous case : density }\end{cases}
$$

Notation abuse $-\mathbb{P}(x)$ instread of $d \mu(x)$

Random variable

\square functions : $X: \Omega \longrightarrow E=\mathbb{R}$ or \mathbb{N} or $\{0,1\}$ or...
$\square E$ is a v.s. countable or not?
$\square \forall \mathcal{A} \subset E, \quad \mathbb{P}(X \in \mathcal{A}):=\mathbb{P}\left(X^{-1}(\mathcal{A})\right)$

- expectation - it is a linear operator from E to \mathbb{R}

$$
\mathbb{E}(X)=\int x d \mu(x)= \begin{cases}\sum_{i} x_{i} \mathbb{P}\left(x_{i}\right) & \text { discrete case : sum } \\ \int^{x} x f(x) d x & \text { continuous case : integral }\end{cases}
$$

- variance $V(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)$

$$
V(a X)=a^{2} V(X)
$$

Random variables

- joint law $\mathbb{P}(x, y)$ (discrete and/or continuous)
\square Marginal $\mathbb{P}(x)=\int \mathbb{P}(x, y) d y$
- independance

$$
\mathbb{P}(x, y)=\mathbb{P}(x) \mathbb{P}(y)
$$

- dependance : conditional laws and conditional expectation

$$
\begin{aligned}
& \mathbb{P}(x \mid y):=\frac{\mathbb{P}(x, y)}{\mathbb{P}(y)} \quad \mathbb{P}(y \mid x):=\frac{\mathbb{P}(x, y)}{\mathbb{P}(x)} \\
& \mathbb{E}(y \mid x)=\int y \mathbb{P}(y \mid x) d y=\frac{\int y \mathbb{P}(x, y) d y}{\mathbb{P}(x)}
\end{aligned}
$$

Bayes theorem

$$
\mathbb{P}(y \mid x)=\frac{\mathbb{P}(x \mid y) \mathbb{P}(y)}{\mathbb{P}(x)}
$$

example

AIDS-Test : We want to find out how likely it is that a patient really has AIDS (event X) if the test is positive (event Y)

- Roughly 0.1% of all Australians are infected $(\operatorname{Pr}(X)=0.001)$
- The probability of a false positive is say 1% $(\operatorname{Pr}(Y \mid \bar{X})=0.01$ and $\operatorname{Pr}(Y \mid X)=1)$
- By Bayes' rule

$$
\begin{aligned}
\operatorname{Pr}(X \mid Y) & =\frac{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)+\operatorname{Pr}(Y \mid \bar{X}) \operatorname{Pr}(\bar{X})} \\
& =\frac{1 \times 0.001}{1 \times 0.001+0.01 \times 0.999}=0.091
\end{aligned}
$$

\square The probability of having AIDS even when the test is positive is just 9.1% !

Sample

$\square X_{1}, X_{2}, \ldots X_{n}$ is i.i.d.
\square problem : infer the law of X based on the sample
\square model : the law of X is $\mathbb{P}(X \mid \theta)$
given
\square bayesian choice θ is a random variable
\square model : prior $\mathbb{P}(\theta)$
\square bayesian choice - estimate the posterior :

$$
\mathbb{P}\left(\theta \mid X_{1}, \ldots X_{n}\right)=\frac{\mathbb{P}\left(X_{1}, \ldots X_{n} \mid \theta\right) \mathbb{P}(\theta)}{\mathbb{P}\left(X_{1}, \ldots X_{n}\right)}
$$

Likelihood: $\mathbb{P}\left(X_{1}, \ldots X_{n} \mid \theta\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \mid \theta\right)$
given

$$
\log \mathbb{P}\left(\theta \mid X_{1}, \ldots X_{n}\right)=\sum_{i=1}^{n} \log \mathbb{P}\left(X_{i} \mid \theta\right)+\log \mathbb{P}(\theta)-\log \mathbb{P}\left(X_{1}, \ldots X_{n}\right)
$$

Convergence

X is a r.v. with $\mathbb{E}(X)=0$ and $V(X)=1 . X_{1}, X_{2}, \ldots X_{n}$ is i.i.d.
" $\sum_{=1} x_{n}=\infty$
$=\bar{n}_{=1}^{n} \sum_{n} x_{n} \vec{x}^{0}$
concentration

- $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{n} \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{N}(0,1)$

CLT
speed
$-\sup _{x} \frac{1}{\sqrt{2 n \log \log n}} \sum_{i=1}^{n} X_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1 \quad$ LIL \quad extreme events

Law of the large number, central limit theorem, Law of the iterated logarithm
what are you after?

Matrices

■ Mathematician, computer scientist, physicist

- linear mapping, tabular of real, set of linear equations
\square singular, well defined
■ singular values and eigen values

