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Overview

vector spaces
we are learning functions
defining norms and dot products arrouns these function
a learning algo. provides a sequence of functions

optimization
learning is optimizing some criterion
with some constrains

probabilities
statistical learning theory

matrices
for practical reason they are evrywhere

Thanks to Alex Smola and S.V.N. “Vishy” Vishwanathan for intial version of slides
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(Real) vector space

� ��� � � � �

a set

�

an internal operation +
an external operation on

��

: �

required properties

1. 	 ��
 � 
 � 	

2. 	 � �
 ��
 � � � 	 ��
 � ��


3.

� 	 � 
 � ��� �
 � �

such that 	 ��
 � 

4.

��� � � � 	 � � � � � 	 �

5.

��� � � � � 	 � � � 	 � � � 	
6. � � 	 ��
 � � � 	 � � 


7.

� � 	 � 	

operator overloading for + and �
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Examples of real vector space

1. the real numbers

��

2. the set of all finite collections of real numbers (a vector)
�� �

3. the set of sequences

�� �

4. the set of sequences such that

����� � 	 � � � 	
5. the set of continous functions


 � �� �

on a domain

� 
 �� �

6. the set of infinitely derivable functions

 � �� �

defined on

� 
 ��

7. the set of all polynomials

�

Not a real vector space

1. the rational numbers (but it is a V.S. over

� �

)

2. positive functions (defined through its domain)

3.

� 	 � � �
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Some properties of vectorial spaces

basis
Distinguish the finite and the infinite case

- independence : A finite familly of vectors

� � � 	 � �� � � � 	 � � is
independent if

� ��� � � � 	 � � � � � � � �

for all

�
- independence : An infinite familly of vectors

�
is independant if all

of its finite sub collections are independent
- span : the span of a familly of vectors is the set of all finite linear

combinations of its members
- basis : A family of vectors

�

is called a basis if it is independent
and generative- ��� � � � �

vectorial sub space : the set spanned by some vectors
dimension : minimum number of elements to get a basis :	
�� �
 � � card

� � �
finite - infinite - countable or not
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distance and norm

Metric a two variable function from a set

� � �

into

�� �

is a metric if
it satisfies

� 	 � 
 � �

� � 	 � 

� � �

if and only if 	 � 


� � 	 � 

� � � �
 � 	 � (symmetric)� � 	 � 


� � � � 	 � 

� � � �
 � 

�

(Triangle inequality)
Metric space is a pair

� ��� � �

, where

�

is a set and
�

is a metric
Norm a Function from a vector space

�

into
��

is a norm if it satisfies� 	 � �

� 	 � � �

if and only if 	 � �

� � 	 � � � � � � 	 � (Scaling)� 	 � 
 � � � 	 � � �
 �

(Triangle inequality)

�A norm not satisfying the first condition is called a pseudo norm
Normed space is a pair

� ���
��� � �

, where

�

is a vector space and

��� �

is a norm
A norm induces a metric via

� �	� � 
 ��� � � � 
 
 �
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Example of distances and norms

	 � � 	 � � 	 � � � �� � � �

� 	 � � � � 	 � � � � 	 � � (city block distance)

� 	 � � � 	 �� � 	 �� (Euclidean)

� 	 ��� � � � 	 � �� � � 	 � �� � � ��

,

� � � � 	

� 	 � � � � �� � � 	 � � � � 	 � � �

Let’s have a look at the unit balls :

� 	 ��� � 	 � � � �

� � 
 �	 
 � 
 � �

� 	 � � � � 

� 


� 	 ��� � � ��

� 	 � � � � 

� 


	 ��� � � ��

� 	 � � � � �� �� � 
�� 
 ��
� � 	 ��� � � �

Let’s have a look at the unit balls around function � 
 � ��� �

:� 	 ��� � 	 
 � 
 � � � � �
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convergenceS

a sequence 	 � � 	 � �� � � � 	 � �� � � converge to 	

- metric space

��� � � � � � � such that

� � � � � � � � 	 � � 	 � � �

- normed space

��� � � � � � � such that

� � � � � � � 	 � 
 	 � � �

�
��� � � 	 � � 	 � �
��� � �
� 	 � 
 	 � � �

for functions a sequence

� � ��� �
� � � ��� �
�� � � � � � ��� �
�� � � converge to

� ��� �

- simple (no norm) - almost everywhere or pointwise

�� � � � �
��� � �
� � ��� � � � ��� �

- unifom

� � � � �
��� � �� ��
�� �

� � � ��� � 
 � ��� � � � �
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Hilbert spaces and Scalar product

- scalar product a Function from a vector space

� � �

into

��

is a
Scalar product if it satisfies

� 	 � 
 � �

� 	 � 	 � � �

(positivity)�
 �
� 	 � 

� � �

if and only if 	 � �

(nondegenerate)

� 	 � 

� � �
 � 	 �

(symmetry)

� 	 � � 
 ��
 � � � � 	 � 

� � � 	 � 

�

(Linearity)

�A scalar product not satisfying the first condition is called an
inner product

- induced norm

� 	 � � � � 	 � 	 �

cool in the quadratic case :

� 	 � � � � 	 � 	 �

- Hilbert space is a pair

� ���
�� � �
� �

, where

�

is a vector space,

�� � �
�

is
a scalar product and

�
is complete with respect to the induced

norm

a scalar product is bilinear
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Examples of Hilbert spaces

�� �

, (any finite dimensional v.s. Euclidian space)

� 	 � 

� � 	 �


the set of square matrices of dim �, � � � � � � ��� � � � � �

� �

the set of square sumable sequences

� 	 � 

� � ���� � 	 �
 ���� the set of polynomials of order lower or equals to

�
,	 � �� �

, the set of square integrable functions
� 	 � 

� � � 	 ��� �
 ��� � ��

�
�

� ��� � � �� � 	
Not a hilbert space

	 �

�
� � ��� � � �� � 	

the set of bounded functions
	 �

(no scalar product)
Span

� � � 	 �� � � � �
 �

(not complete)

When only the completion is missing, it is called pre-Hilbertian
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How to “compare” objects

map

� 
 � ��

or

� � � 
 � ��

topology convegence structure
distance similarity
norm size (enregy)
scalar product correlation

� 	 � � � � 	 � 	 �

� � 	 � 

��� � � 	 
 
 �

��
�

�� ��� � �
 � � � 	 � 

� �� �

� 	 
 
 � � � � 	 � � � �
 � � 
 � � 	 � 

� � � � � 
 � 	 � 

� �

� � 	 � 

� � � � 	 � �
 �

(Cauch Schwartz inequality)

measure

�

objects through a map

� 
 � ��

the set of all possible linear and continuous measures is the dual

� �

Example : what is the dual of

��

?
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An important example : the evaluation functional

� ��� �

have to mean something

� � � � �� � � � � ��� � � �
��� �

� �� � 
 � ��

�

� 
 � � � � � � ��� �

	 � �� �

is not ok !

� 
 �� �

� � is a linear functional

� � ��� � � �
� � � � ��� � � �
��� �

if it is continous, represent
� � by a function

� � � �

� ��� � � � � � � � �� � � �

. . Lecture 2 - Mathematical tools for machine learning . – p.12/26



Learning is functional optimization

optimality principle
convexity

unicity of the solution
efficent algorithms

non convex
difficult problem

minimization with constrains
lagrangian
KKT optimality conditions
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Learning problems

in 	 � �� �

objective function

�� � 
 � ��

�

� 
 � � � � �

optimization (Weierstrass theorem) if

�

is compact,

�

derivable
and convex :

� 
 �

� � �� �� �
� � 	 � � find 	 �

such that

� � � 	 � � � �

equality constraints

� 
 �
�

� � 	 �

such that � �� 	 � � � � � � � � � ( Lagrange)

equality constraints
� 
 �
�

� � 	 �

such that � �� 	 � � � � � � � � � ( KKT)

Both (Karush Kuhn Tucker)
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convexity and derivatives

derivatives (finite case)

�

is not derivable : subdifferential at 	 (the set of subgradients)

� � � 	 � � �
� � �� � ��� � �
 � � � � 	 � � �

� �
 
 	 � �

convexity
convex set, let

�

be a vector space, let
� 
 �

.

�

is convex iff

�� � 	 � � � � � � 	 � 
 � �� we have
� 	 � � � 
 � �
 � �

examples : unit ball, subdiffential...
convex function

�� � 
 � ��

�� � 	 � � � � � � 	 � 
 � ��� we have

� � � 	 � � � 
 � �
 � � � � � 	 � � � � 
 � � � �
 �

examples : linear functions, � � � � � 	 �, max, norms, log partition...
convex (set + objective + constraints)

�

unique solution exists
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Optimization : functional derivative

�

a Hilbert space embeded with

�� � �
�

and such that

� ��� � � � �� � � �

�� � 
 � ��

�

� 
 � � � � �

� 
 �
�� �

� � � � � find

� �

such that
� � � � � � � �

The gateau differential of the functional
�

in the direction � is the
following limit if it exists

� � � �� �
� � �
��

� � �
� � � � � �
� 
 � � � �

�

example

� � � � �
�

�

�
��� �

� � � 	 �� 
 
 �� � �
�

�
� � � �

�
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Example of functional derivative

� � � � � �
� � � � � ��� � � � � 	 �� � � �
� 	 �� 
 
 �� � � �� � � � � �
� �

� � � 	 �� � � �
� 	 �� 

 �� � � � � � 	 �� 

 �� � � � � �

�
� 	 �� � � � �� � � � 	 �� 

 �� �
� 	 ��

� � � � �
� � � � � � � � � � �

�
� � � �� � �� �
�

� � � � � �
� 
 � � � �

� �

�
��� �

� � � 	 �� 
 
 �� �
� 	 �� � � � �� �
� � � � �

�
� 	 �� � � � � �

�
� �

� �� �

� �

� �

�
��� �

� � � 	 �� 
 
 �� �
��

� � �

� �� �

� � � ��

� �
�

� � � � � � � � � � 	 � �
�

��� �
� � � �� � 	 � ,� � � �

�
� � � 	 �� 
 
 ��
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minimizing with constraints : eliminate constraints

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Minimum contrain

min J(x) dans le domaine admissible � 
 �

� � �� �

� � 	 �
such that

� � 	 � � �

�

� 
 �
�

� ��
�

� � 	 � � �

Lagrangien

� � 	 � � � � � � 	 � � � � � 	 �

� 
 � � � � 	 �

such that

� � 	 � � � �

� � � 	 � � � � � � � 	 � � �

� � � � 	 � � � � � � � KKT conditions

�

represents the importance of the constraint in the solution

either

� � � �

or

� �� 	 � � �
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minimizing with constraints : dual formulation

Optimality conditions : 	 � �� �

� 
 � � � � 	 �

such that

� � 	 � � � �
� 
 � � � �� � � � 	 � � � � � � 	 �

� �� �

��� �� � � � �� �

Phase 1

� � � 	 � � � � � � � 	 � � � � find a function

�

such that 	 � � � � �

phase 2 :

� � �� �
� ��

�

� � � � � � � � � � � � � � � � �

exemple

� � 	 � � 	 �� 
 	 � and

� � 	 � � 	 �� � 	 �� 
 �
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Probability

set of events

�

: is it countable or not (discrete or continuous)
discrete case : probability

�� ��� �

continuous case :

�� ��� � � �

!�� � �� � �� � �

, e.g.

� � �� � � � 	 � � �� ��� � 	 � cumulative function
no probability but density

� � 	 � � � � � 	 �

unified vue : measure

�	� � 	 � �

�� � 	 �
� � 	 � � 	

discrete case : probability
continuous case : density

Notation abuse -
�� � 	 � instread of

�	� � 	 �
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Random variable

functions :

�� � 
 � 
 � ��

or

�


or

� � � � �

or...


is a v.s. countable or not ?� � 
 
 � �� � � � � ��� � �� � � � � � � � �

expectation - it is a linear operator from




to

��

�� � � � � 	 �	� � 	 � �
�

���
���

�
	 ��� � 	 ��

	 � � 	 � � 	

discrete case : sum
continuous case : integral

variance

� � � � � �� � � � 
 �� � � � � � �

� �� � � �� � � � � �
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Random variables

joint law

�� � 	 � 

�

(discrete and/or continuous)

Marginal

�� � 	 � � �� � 	 � 

� �


independance �� � 	 � 

� � �� � 	 � �� �
 �

dependance : conditional laws and conditional expectation

�� � 	 �
 ��� �
�� � 	 � 

�

�� �
 � �� �
 � 	 � � �
�� � 	 � 

�

�� � 	 �

�� �
 � 	 � � 
 �� �
 � 	 � �
 �
�
 �� � 	 � 

� �


�� � 	 �

Bayes theorem

�� �
 � 	 � �
�� � 	 �
 � �� �
 �

�� � 	 �
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example

AIDS-Test : We want to find out how likely it is that a patient really
has AIDS (event

�

) if the test is positive (event

�

)
Roughly

�� � �

of all Australians are infected
(

��� � � � � �� � � �

)
The probability of a false positive is say

� �
(

��� � � � � � � �� � �

and

��� � � � � � � �

)
By Bayes’ rule

��� � � � � � �

��� � � � � � ��� � � �

��� � � � � � ��� � � � � ��� � � � � � ��� � � �

�

� � �� � � �

� � �� � � � � �� � � � �� � � � � �� � � �

The probability of having AIDS even when the test is positive is
just

�� � �

!
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Sample

� � � � � �� � � � � is i.i.d.
problem : infer the law of

�

based on the sample
model : the law of

�

is

�� � � �� �

given
bayesian choice

�

is a random variable
model : prior

�� �� �

given
bayesian choice - estimate the posterior :

�� �� � � � �� � � � � � �
�� � � � �� � � � � �� � �� �� �

�� � � � �� � � � � �

Likelihood :

�� � � � �� � � � � �� � � � � ��� � �� � � ��� �

given

��� � �� �� � � � �� � � � � � �
�

��� �
��� � �� � � ��� � � ��� � �� �� � 
 ��� � �� � � � �� � � � � �
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Convergence

�

is a r.v. with

�� � � � � �

and

� � � � � �

.

� � � � � �� � � � � is i.i.d.�
��� �

� � 
 �� � � 	

�
�

�
��� �

� � 
 �� � �
�

LLN concentration

�
� �

�
��� �

� � 
 �� � �
� � � � �

CLT speed

�� �
�

�

� � � ��� � ��� � �
�

��� �
� � 
 �� � �
�

LIL extreme events

Law of the large number, central limit theorem, Law of the iterated logarithm

what are you after ?
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Matrices

Mathematician, computer scientist, physicist

linear mapping, tabular of real, set of linear equations

singular, well defined

singular values and eigen values
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