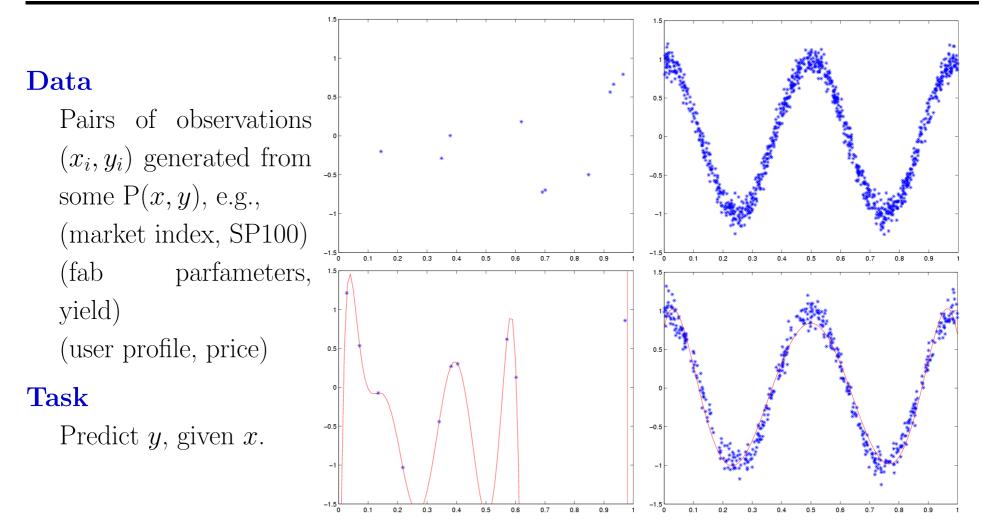
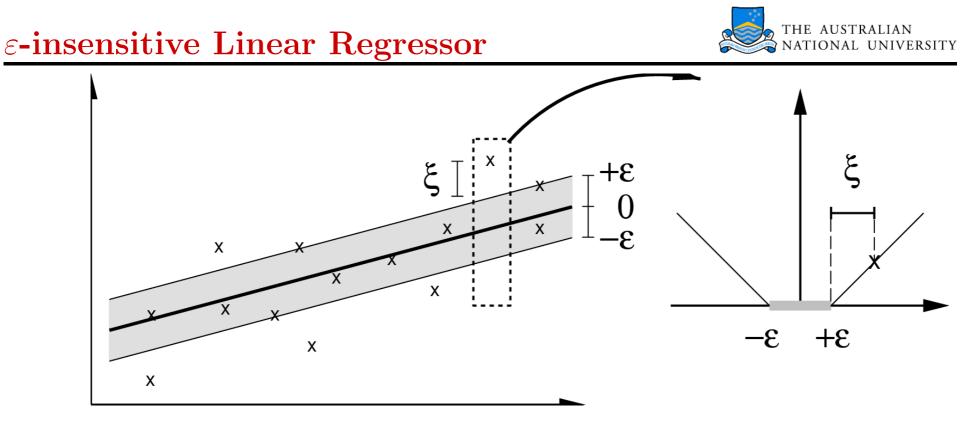
Regression





Optimization Problem

Find the "flattest" function $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle + b$ while keeping the approximation error exceeding ε , i.e. $|y_i - f(\mathbf{x}_i)|_{\varepsilon}$ as small as possible. Here

$$|\xi|_{\varepsilon} = \max(0, |\xi| - \varepsilon) = \begin{cases} |\xi| - \varepsilon & \text{if } |\xi| \ge \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

Idea

We have to rewite the loss function $|\xi|_{\varepsilon}$ as an optimization problem (week 3).

Analog to Soft Margin Classification

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*)$$

subject to
$$(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge y_i - \varepsilon - \xi_i$$

$$(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \le y_i + \varepsilon + \xi_i$$

$$\xi_i, \xi_i \ge 0 \text{ for all } 1 \le i \le m$$

Interpretation and Regularized Risk Functional

With the loss function $c(\mathbf{x}, y, f(\mathbf{x})) := |y - f(\mathbf{x})|_{\varepsilon}$ this is equivalent to minimizing

$$R_{\text{reg}}[f] = \frac{1}{m} \sum_{i=1}^{m} |y_i - f(\mathbf{x}_i)|_{\varepsilon} + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

All we have to do is rescale λ into $C = \frac{1}{\lambda m}$.

Lagrange Function

We have constraints in ξ_i and ξ_i^* , i.e. from both sides, with corresponding η_i, η_i^* .

$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \eta, \eta^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) - \sum_{i=1}^m (\eta_i \xi_i + \eta_i^* \xi_i^*)$$

+
$$\sum_{i=1}^m \alpha_i^* ((\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - y_i - \varepsilon - \xi_i^*)$$

+
$$\sum_{i=1}^m \alpha_i (y_i - \varepsilon - \xi_i - (\langle \mathbf{w}, \mathbf{x}_i \rangle + b))$$

Saddlepoint in w

$$\partial_{\mathbf{w}} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \eta, \eta^*) = \mathbf{w} + \sum_{i=1}^m (\alpha_i^* \mathbf{x}_i - \alpha_i \mathbf{x}_i) = 0 \iff \mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \mathbf{x}_i$$

Saddlepoint in b

$$\partial_b L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \eta, \eta^*) = \sum_{i=1}^m \alpha_i^* - \alpha_i = 0$$

Saddlepoint in ξ_i

$$\partial_{\xi_i} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \eta, \eta^*) = C - \eta_i - \alpha_i = 0$$

Saddlepoint in ξ_i

$$\partial_{\xi_i^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \eta, \eta^*) = C - \eta_i^* - \alpha_i^* = 0$$

Strategy

Substitute the equations into L to get rid of all primal variables.

Dual Optimization Problem

Rewriting the Lagrange Function

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^m (\alpha_i - \alpha_i^*) \langle \mathbf{x}_i, \mathbf{w} \rangle + \sum_{i=1}^m (\alpha_i - \alpha_i^*) y_i - \sum_{i=1}^m (\alpha_i + \alpha_i^*) \varepsilon$$
$$\sum_{i=1}^m [\xi_i (C - \eta_i - \alpha_i) + \xi_i^* (C - \eta_i^* - \alpha_i^*)] + b \sum_{i=1}^m (\alpha_i^* - \alpha_i)$$

Dual Objective Function

$$D = -\frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) y_i - \sum_{i=1}^{m} (\alpha_i + \alpha_i^*) \varepsilon$$

Dual Constraints $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \mathbf{x}_i$ and $\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$ From $\alpha_i, \eta_i \ge 0$ and $C = \alpha_i + \eta_i$ we conclude $\alpha_i \in [0, C]$.

Solution in w

- w is given by a linear combination of training patterns \mathbf{x}_i and the solution is **independent of the dimensionality of** \mathcal{X} .
- The expansion of **w** depends on the Lagrange multipliers α_i and α_i^* .

Kuhn-Tucker-Conditions

We know that at the optimal solution

Constraint \cdot Lagrange Multiplier = 0

Only points with $|y_i - f(\mathbf{x}_i)| \ge \varepsilon$ contribute to the solution, since

$$\alpha_i(y_i - \varepsilon - \xi_i - (\langle \mathbf{w}, \mathbf{x}_i \rangle + b)) = 0 \text{ and } \alpha_i((\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - y_i - \varepsilon - \xi_i^*) = 0$$

Moreover, $\alpha_i = C$ (and likewise α_i^*) only if $|y_i - f(\mathbf{x}_i)| > \varepsilon$, since also

$$\eta_i \xi_i = (C - \alpha_i) = 0 \text{ and } \eta_i^* \xi_i^* = (C - \alpha_i^*) = 0$$

Only \mathbf{x}_i at or beyond the decision boundary can contribute to \mathbf{w} . This also allows us to compute b via $b = y_i - \varepsilon - \langle \mathbf{w}, \mathbf{x}_i \rangle$ for $\alpha_i \in (0, C)$.

Kernels

Nonlinearity via Feature Maps

In the linear optimization problem

minimize
$$\frac{1}{2} \sum_{\substack{i,j=1\\m}}^{m} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \langle \mathbf{x}_i, \mathbf{x}_j \rangle - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) y_i + \sum_{i=1}^{m} (\alpha_i + \alpha_i^*) \varepsilon$$
subject to
$$\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C] \text{ for all } 1 \le i \le m$$

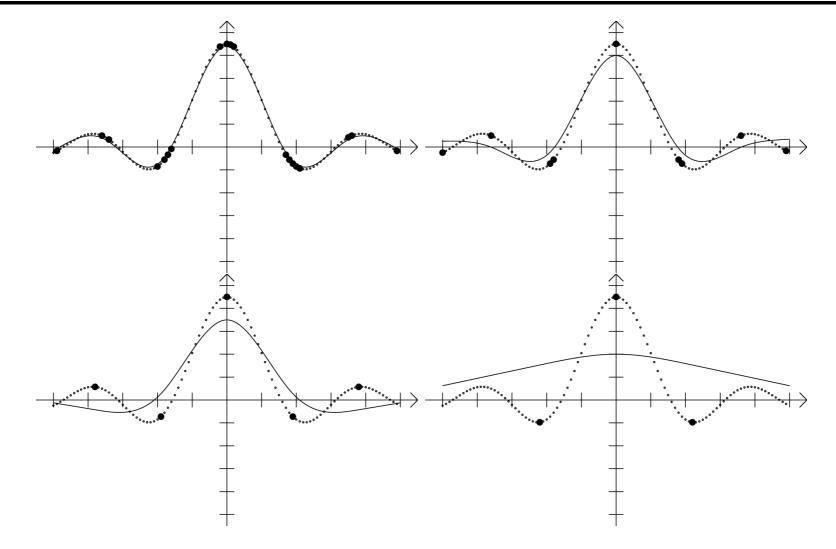
we replace \mathbf{x}_i by $\Phi(\mathbf{x}_i)$ to obtain the new objective function

minimize
$$\frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) k(\mathbf{x}_i, \mathbf{x}_j) - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) y_i + \sum_{i=1}^{m} (\alpha_i + \alpha_i^*) \varepsilon$$

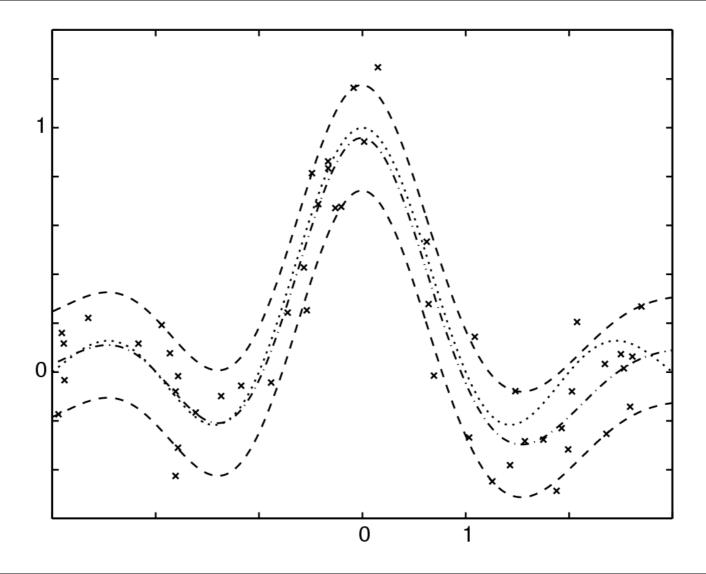
Function Expansion

$$\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \Phi(\mathbf{x}_i) \Longrightarrow f(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + b = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) k(\mathbf{x}_i, \mathbf{x}) + b.$$

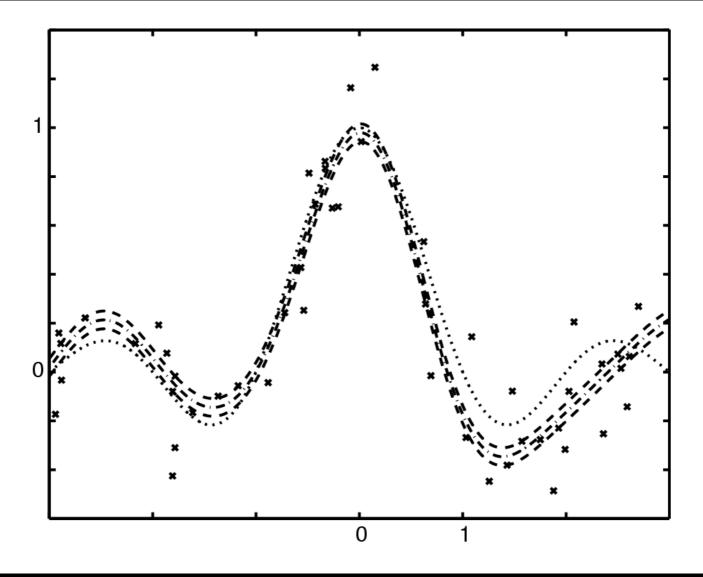
Examples



Examples



Examples



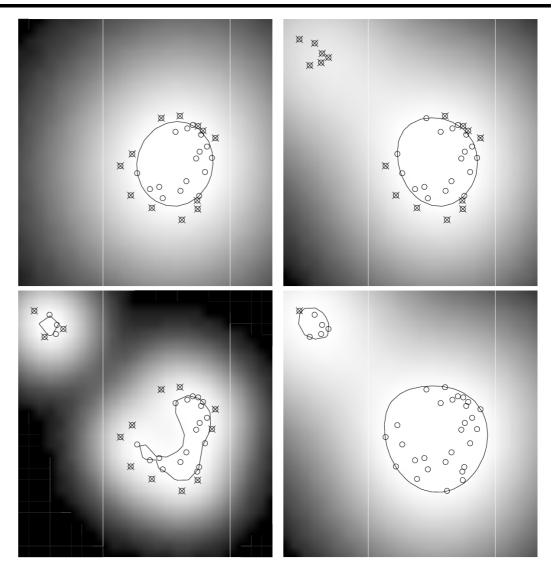
Novelty Detection

Data

Observations (x_i, y_i) generated from some P(x), e.g., (network usage patterns) (handwritten digits) (alarm sensors) (factory status)

Task

Find unusual events, clean database, distinguish typical examples.



Maximum Distance Hyperplane

Idea

Find hyperplane that has **maximum distance from origin** yet is still closer to the origin than the observations.

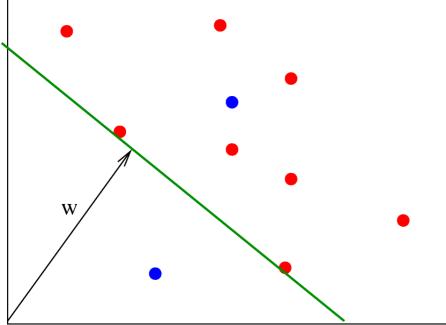
Hard Margin

minimize $\frac{1}{2} \|\mathbf{w}\|^2$ subject to $\langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1$

Soft Margin

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

subject to $\langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1 - \xi_i$
 $\xi_i \ge 0$



Primal Problem

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

subject to $\langle \mathbf{w}, \mathbf{x}_i \rangle - 1 + \xi_i \ge 0$ and $\xi_i \ge 0$

Lagrange Function

As before, we add the negative constraints to the objective function and obtain:

$$L(\mathbf{w},\xi) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^m \xi_i - \sum_{i=1}^m \alpha_i \left(\langle w, x_i \rangle - 1 + \xi_i\right) - \sum_{i=1}^m \eta_i \xi_i \text{ where } \alpha_i, \eta_i \ge 0$$

For optimality we have to compute the partial derivatives of L with respect to \mathbf{w} and ξ and eliminate the primal variables.

Note that we have no constant offset b here.

Optimality Conditions

$$\partial_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{m} \alpha_i \mathbf{x}_i = 0 \implies \mathbf{w} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i$$
$$\partial_{\xi_i} L = C - \alpha_i - \eta_i = 0 \implies \alpha_i \in [0, C]$$

Now we **substitute** the two optimality conditions **back into** L.

Dual Problem

minimize
$$\frac{1}{2} \sum_{i=1}^{m} \alpha_i \alpha_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle - \sum_{i=1}^{m} \alpha_i$$

subject to $\alpha_i \in [0, C]$

With Kernels

minimize
$$\frac{1}{2} \sum_{i=1}^{m} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) - \sum_{i=1}^{m} \alpha_i$$

subject to $\alpha_i \in [0, C]$