# **Prior Probability**



### Idea 1

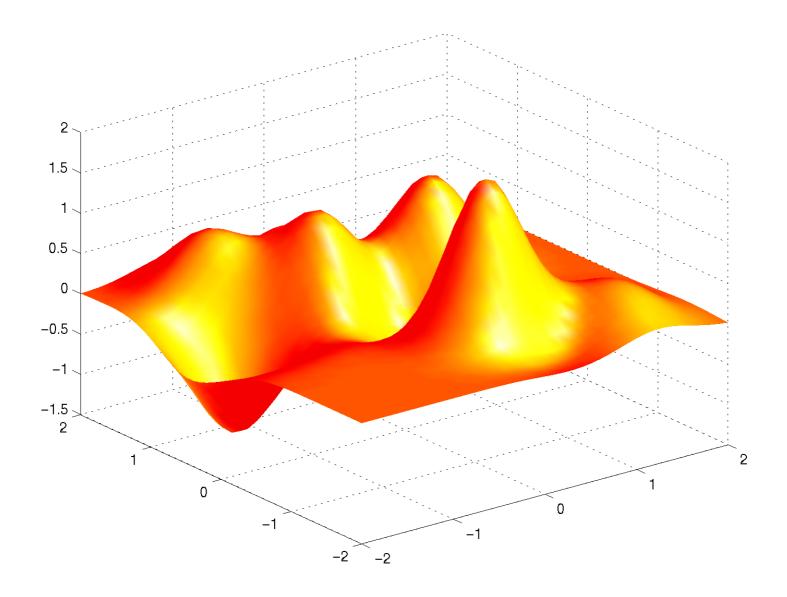
Quite often we have a rough idea of what function we can expect beforehand.

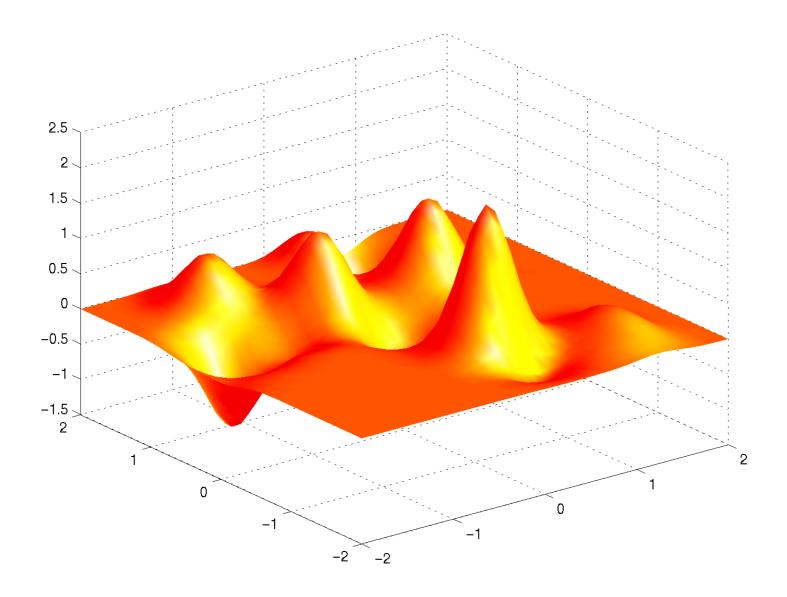
- We observe similar functions in practice.
- We **think** that e.g. smooth functions should be more likely.
- We **would like** a certain type of functions.
- We have **prior knowledge** about specific properties, e.g. vanishing second derivative, etc.

### Idea 2

We have to specify somehow, how likely it is to observe a specific function f from an overall class of functions. This is done by assuming some density p(f) describing how likely we are to observe f.







# Examples



# Speech Signal

We know that the signal is bandlimited, hence any signal containing frequency components above 10kHz has density 0.

### Parametric Prior

We may know that f is a linear combination of  $\sin x$ ,  $\cos x$ ,  $\sin 2x$ , and  $\cos 2x$  and that the coefficients may be chosen from the interval [-1, 1].

$$p(f) = \begin{cases} \frac{1}{16} & \text{if } f = \alpha_1 \sin x + \alpha_2 \cos x + \alpha_3 \sin 2x + \alpha_4 \cos 2x \text{ with } \alpha_i \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}$$

### Prior on Function Values

We assume that there is a correlation between the function values  $f_i$  at location  $f(\mathbf{x}_i)$ . There we have

$$p(f_1, f_2, f_3) = \frac{1}{\sqrt{(2\pi)^3 \det K}} \exp\left(-\frac{1}{2}(f_1, f_2, f_3)^\top K^{-1}(f_1, f_2, f_3)\right).$$

# Examples



#### Prior on Function Values

The larger the off diagonal elements  $K_{ij}$  are, the more the corresponding function values  $f(x_i)$  and  $f(x_j)$  are correlated. The main diagonal elements  $K_{ii}$  provide the variance of  $f_i$  and the off diagonal elements the covariance between pairs  $f_i$  and  $f_j$ . This is not a prior assumption about the function f but only about its values  $f(x_i)$  at some previously specified locations.

## Nonparametric Priors

We may only have the abstract knowledge that smooth functions with small function values are more likely to occur. One possible way of quantifying such a relation is to posit that the prior probability of a function occurring depends only on its  $L_2$  norm and the  $L_2$  norm of its first derivative. This leads to expressions of the form

$$-\ln p(f) = c + ||f||^2 + ||\partial_x f||^2.$$

## How to use Priors



## Bayes Rule

We want to infer the probability of f, having observed X, Y. By Bayes' rule we obtain

$$p(f|X,Y) = \frac{p(Y|f,X)p(f|X)}{p(Y|X)}.$$

This is also often called the **posterior probability** of observing f, after that the data X, Y arrived.

# **Usual Assumption**

Typically we assume that X has no influence as to which f we may assume, i.e. p(f|X) = p(f) (X and f are independent random variables).

#### Likelihood

p(Y|f,X) is the Likelihood term that we used in Maximum Likelihood estimation. All that is happening is a **reweighting** of the likelihood by the prior distribution.

## Inference



### Goal

We want to infer f, possibly its value at a new location  $\mathbf{x}$  via p(f|X,Y).

### Trick

The quantity p(Y|X) is usually quite hard to obtain, moreover it is independent of f, therefore we can just treat it as a normalizing factor and we obtain

$$p(f|X,Y) \propto p(Y|f,X)p(f)$$

The normalization constant can be taken care of later.

### Prediction

If we want to compute the expected value of  $f(\mathbf{x})$  at a new location all we have to do is compute

$$\mathbf{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(f|X,Y)df$$

# Inference, Part II

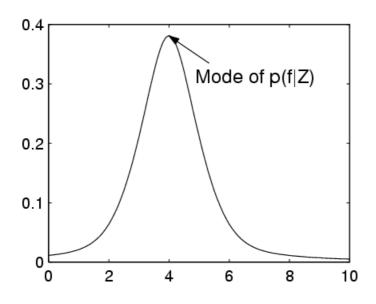


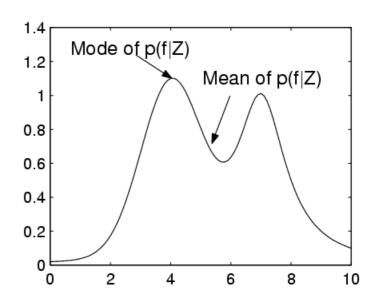
### Variance

Likewise, to infer the predictive variance we compute

$$\mathbf{E}\left[\left(f(\mathbf{x}) - \mathbf{E}[f(\mathbf{x})]\right)^2\right] = \int \left(f(\mathbf{x}) - \mathbf{E}[f(\mathbf{x})]\right)^2 p(f|X, Y) df$$

This means that we can estimate the variation of  $f(\mathbf{x})$ , given the data and our prior knowledge about f, as encoded by p(f).





# Approximate Inference



### **Problem**

Nobody wants to compute integrals . . .

### Idea

After all, we are only **averaging**, so replace the mean of the distribution by the mode and hope that it will be ok. This leads to the maximum a posteriori estimate (see next slide).

# Lucky Coincidence

For Gaussian distributions (and many others) mode and mean coincide.

### Problem 2

For some distributions it does not work well ...

### Idea 2

Approximate the posterior p(f|X,Y) by a **parametric** model. This is often referred to as **variational approximation**.

# Maximum a Posteriori Estimate



# Maximizing the Posterior Probability

To find the hypothesis f with the highest posterior probability we have to maximize

$$p(f|X,Y) = \frac{p(Y|f,X)p(f|X)}{p(Y|X)}$$

### Lazy Trick

Since we only want f (and p(Y|X) is independent of f), all we have to do is maximize p(Y|f,X)p(f).

# Taking Logs

For convenience we get f by minimizing

$$-\log p(Y|f,X)p(f|X) = -\log p(Y|f,X) - \log p(f) = -\log \mathcal{L} - \log p(f)$$

So all we are doing is to **reweight the likelihood** by  $-\log p(f)$ . This looks suspiciously like the regularization term. We will match up the two terms later.

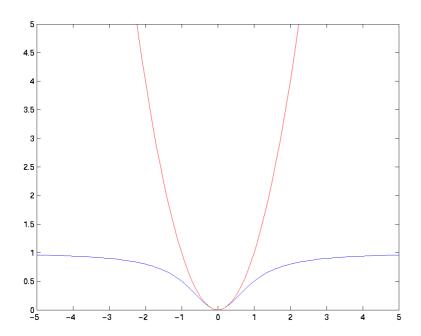


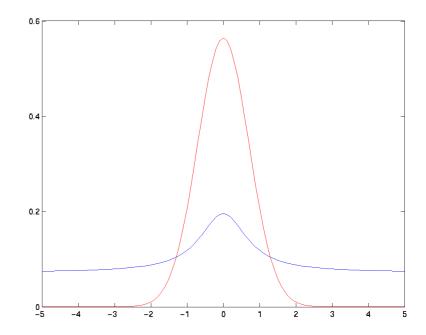


### Variance

Once we found the **mode**  $f_0$  of the distribution, we might as well approximate the variance by approximating p(f|X,Y) with a normal distribution around  $f_0$ .

This is done by computing the second order information at  $f_0$ , i.e.  $\partial_f^2 - \log p(f|X,Y)$ .





# Connection to Regularized Risk



### Recycling of the Likelihood

Match up terms as we did with the likelihood and the loss function. In particular, we recycle these terms:

$$c(\mathbf{x}, y, f(\mathbf{x})) \equiv -\log p(y - f(\mathbf{x}))$$
  
 $p(y|f(\mathbf{x})) \equiv \exp(-c(\mathbf{x}, y, f(\mathbf{x})))$ 

Now all we have to do is take care of  $m\lambda\Omega[f]$  and  $-\log p(f)$ .

# Regularizer and Prior

The correspondence

$$m\lambda\Omega[f] + c = -\log p(f)$$
 or equivalently  $p(f) \propto \exp(-m\lambda\Omega[f])$ 

is the link between regularizer and prior.

#### Caveat

The translation from regularizer into prior works only to some extent, since the integral over f need not converge.