ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 3 The due date for these problems is Monday, May 21 Teaching Period April 30 to June 8, 2001

A Theory

Problem 11 (Linear Programs and ε -insensitive Loss, 8 Points) Assume we have the following loss function

$$c(\mathbf{x}, y, f(\mathbf{x})) = |y - f(\mathbf{x})|_{\varepsilon} \text{ where } |\xi|_{\varepsilon} := \begin{cases} 0 & \text{if } |\xi| \le \varepsilon \\ \xi - \varepsilon & \text{if } \xi > \varepsilon \\ -\xi - \varepsilon & \text{otherwise} \end{cases}$$

- 1. Rewrite $|\xi|_{\varepsilon}$ as a linear optimization problem (analogous to the rewrite of $|\xi|$ which was discussed in the lecture). Hint: all you need to do is modify the constraints.
- 2. Rewrite the regularized risk functional for a linear model $f(x) = \langle \mathbf{w}, \mathbf{x} \rangle$. as a quadratic optimization problem with constraints. **Hint:** you only need to take care of the empirical risk term.

Recall that the regularized risk is given by

$$R_{\text{reg}}[f] = \frac{1}{m} \sum_{i=1}^{m} |y_i - f(\mathbf{x}_i)|_{\varepsilon} + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Problem 12 (Prior Probabilities, 12 Points)

Assume a prior probability $p(f) = c \exp(-\frac{1}{2}(||f||^2 + ||f'||^2))$ on $[0, 2\pi]$ for suitably chosen c.

1. For the class of functions \mathfrak{F} given by

$$\mathcal{F} := \{ f | f(x) = \alpha_0 + \alpha_1 \cos x + \beta_1 \sin x \}$$

with $\alpha_i, \beta_i \in \mathbb{R}$ compute the normalization constant such that $\int_{\mathcal{F}} p(f) df = 1$.

2. Now assume the class

$$\mathcal{F} := \left\{ f | f(x) = \alpha_0 + \sum_{i=1}^n \alpha_i \cos(ix) + \beta_i \sin(ix) \right\}.$$

What is the value of the normalization constant in this case. Rewrite p(f) directly in terms of the coefficients α_i and β_i .

- 3. Consider the series $f_n := \sin x + \frac{1}{n} \sin nx$. Show that the series f_n converges to $\sin x$ for $n \to \infty$, yet that $p(f_n)$ does not converge to $p(\sin x)$.
- 4. Bonus question: Interpret the previous result.

ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 3 The due date for these problems is Monday, May 21 Teaching Period April 30 to June 8, 2001

B Programming

Problem 13 (Generalized Linear Models, 20 Points) Let us assume a generalized linear model on \mathbb{R} where f is given by

$$f(x) = a + bx + \sum_{i=1}^{n} \alpha_i \exp(-(i-x)^2)$$

for $a, b, \alpha_i \in \mathbb{R}$ and we have squared loss, i.e.

$$c(\mathbf{x}, y, f(\mathbf{x})) = \frac{1}{2}(y - f(\mathbf{x}))^2.$$

- 1. Implement in C/MATLAB the algorithm that takes $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$, (y_1, \ldots, y_m) , and n as an input and produces a, b and α_i which minimize the empirical risk as an output. Note: take care of cases where m < n. You can use pinv in MATLAB.
- 2. Test your program on data generated by

$$y = f(x) + \xi$$
 where $f(x) = 1 + 2x + 3\exp(-(3-x)^2) + 2\exp(-(5-x)^2)$

More specifically, draw x from [0, 10] and let ξ be normally distributed with zero mean and variance σ . Plot the estimate of f(x) on [0, 10] for $(n = 10, m = 5, \sigma = 0)$, $(n = 10, m = 20, \sigma = 0)$, $(n = 10, m = 50, \sigma = 0)$, $(n = 10, m = 5, \sigma = 0.5)$, $(n = 10, m = 20, \sigma = 0.5)$, $(n = 10, m = 50, \sigma = 0.5)$. **Hint:** You can script the testing.

3. Now we introduce a regularization term via

$$\Omega[f] = \frac{1}{2} \left(a^2 + b^2 + \sum_{i=1}^n \alpha_i^2 \right)$$

to minimize

$$R_{\rm reg}[f] = R_{\rm emp}[f] + \lambda \Omega[f]$$

Modify your C/MATLAB from above such that the algorithm takes $(\mathbf{x}_1, \ldots, \mathbf{x}_m)$, (y_1, \ldots, y_m) , λ , and n as an input and produces a, b and α_i which minimize the empirical risk as an output.

- 4. Test your program in the setting (2) for
 - $\begin{array}{l} (n = 10, m = 30, \sigma = 0.1, \lambda = 0.01), \ (n = 10, m = 30, \sigma = 0.1, \lambda = 0.1), \\ (n = 10, m = 30, \sigma = 0.1, \lambda = 1), \ (n = 10, m = 30, \sigma = 0.5, \lambda = 0.01), \\ (n = 10, m = 30, \sigma = 0.5, \lambda = 0.1), \ (n = 10, m = 30, \sigma = 0.5, \lambda = 1). \end{array}$

(n: number of exponential terms, m: number of observations, σ : variance of additive noise, λ : regularization constant)