Introduction to Machine Learning

What you can use it for

- pattern recognition (faces, digits, speech),
- bioinformatics (gene finding, introns)
- internet (spam filtering, search engines)
- prediction (stock market)

What you get

- skills in programming, numerical analysis, optimization
- practical experience with data
- easy do-it-yourself algorithms
http://axiom.anu.edu.au/~smola/engn4520/

Overview

Week 1

Linear Algebra, Hilbert Spaces, Numerical Mathematics

Week 2

Learning Theory, Statistics, Risk Functional, Common Distributions, Perceptron

Week 3

Regression, Squared Loss, Noise Models and Loss, Regularization
Week 4
Kernels, Kernel Perceptron, Kernel Regression

Week 5

Large Margin and Optimization, SV Classification, Regression, Novelty Detection

Week 6

Applications and Mini Projects: Text Categorization and Bad Digits

Practical Issues

Scoring

This is a 3 credit point unit. Exercises and programming each count $\frac{1}{4}$, the final exam counts $\frac{1}{2}$.

Problem Sheets

Due Monday at 10am in the mailbox. Late submissions cost 20% a day.
You are expected to work together in groups of 3 and submit one solution sheet per group. If you copy from other groups you will not get points for these solutions.

Tutorials

Ben O'Loghlin (ben@syseng.anu.edu.au) will hold the tutorials (Thursday 2-5pm) which include solutions of the exercise sheets and some programming practice with the SVLab toolbox.

Final Exam

Probably Monday, June 18 (slides, personal notes, calculator and tables are OK).

A Crash-Course in Math

Topics

- Vector spaces, Hilbert and Banach Spaces, Metrics and Norms
- Matrices, Eigenvalues, Orthogonal Transformations, Singular Values
- Operators, Operator Norms, Function Spaces revisited

Rationale

- We need this toolbox to describe the functions we will be dealing with and to set up the optimization/learning problems.

Metric

Definition 1 (Metric)

Denote by \mathcal{X} a space. Then $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}$is a metric on \mathcal{X} if for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$

1. $d(\mathbf{x}, \mathbf{y})=0$ is equivalent to $\mathbf{x}=\mathbf{y}$
2. $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$
3. $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})$ (Triangle Inequality)

Example 1 (Trivial Metric)

For arbitrary X define $d(\mathbf{x}, \mathbf{y})=1$ if $\mathbf{x} \neq \mathbf{y}$ and $d(\mathbf{x}, \mathbf{y})=0$ if $\mathbf{x}=\mathbf{y}$.

Example 2 (Manhattan Distance)

For $X=\mathbb{R}^{n}$ define $d(\mathbf{x}, \mathbf{y}):=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$.

Vector Spaces

Definition 2 (Vector Space)

A space X on which for all $\mathbf{x}, \mathbf{y} \in X$ and for all $\alpha \in \mathbb{R}$ the following operations are defined:

1. $\mathbf{x}+\mathbf{y} \in \mathcal{X}$ (Addition)
2. $\alpha \mathbf{x} \in \mathcal{X}$ (Multiplication)

Definition 3 (Cauchy Series)

Given a space \mathcal{X}, a series $\mathbf{x}_{i} \in \mathcal{X}$ with $i \in \mathbb{N}$ is a Cauchy series if for any ϵ there exists an n_{0} such that for all $m, n \geq n_{0}$ we have $d\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right) \leq \varepsilon$.

Definition 4 (Completeness)

A space \mathcal{X} is complete if the limits of every Cauchy series are elements of \mathcal{X}.
We call \bar{X} the completion of \mathcal{X}, i.e. the union of \mathcal{X} and all its limits of Cauchy series.

Vector Spaces: Examples

Rational Numbers

Addition and multiplication are obviously OK. However, the space is not complete. For instance, we can find a Caucy series of $x_{i} \in \mathbb{Q}$ converging to $\sqrt{2}$.

Real Numbers

Addition and multiplication are obviously OK. The same holds for limits (recall algebra lectures).
\mathbb{R}^{n}
Prototypical example of a vector space. addition, multiplication, and limits are obviously OK, e.g., take $\mathcal{X}=\mathbb{R}^{5}$ and $\mathbf{x}=(2,33.4,4.2,2.999,6)$.

Polynomials

Functions such as $f(x):=a+b x+c x^{2}+d x^{3}$ obviously form a vector space. For polynomials of finite order n we can even find a mapping between \mathcal{X} and \mathbb{R}^{n}.

Vector Spaces: Examples

Series

series $\left(a_{i}\right)$ of numbers with $a_{i} \in \mathbb{R}$ and $i \in \mathbb{N}$ are clearly vector spaces.

Fourier Expansions

expansions via the discrete Fourier transform form a vector space where

$$
f(x)=\sum_{j=1}^{n} s_{j} \sin (j x)+c_{j} \cos (j x)
$$

Functions

many classes of functions, e.g., $f:[0,1] \rightarrow \mathbb{R}$.

Counterexamples

- $f:[0,1] \rightarrow[0,1]$ does not form a vector space!
- \mathbb{Z} is not a vector space, unless we only allow multiplications by integers.
- The alphabet $\{a, \ldots, z\}$ is not a vectorspace (still it can be an interesting mathematical object, e.g. when determining similarity of documents).

Banach Spaces

Definition 5 (Norm)

Given a vector space \mathcal{X}, a mapping $\|\cdot\|: \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}$is called a norm if for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and all $\alpha \in \mathbb{R}$ it satisfies

1. $\|\mathrm{x}\|=0$ if and only if $\mathrm{x}=0$
2. $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ (scaling)
3. $\|\mathrm{x}+\mathrm{y}\| \leq\|\mathbf{x}\|+\|\mathrm{y}\|$ (triangle inequality)

A mapping $\|\cdot\|$ not satisfying (1) is called pseudo norm.
Note that a norm also introduces a metric via $d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|$.

Definition 6 (Banach Space)

A complete vector space X together with a norm $\|\cdot\|$.

Banach Spaces: Examples

ℓ_{p}^{m} Spaces

Spaces
Take the \mathbb{R}^{m} endowed with the norm $\|\mathbf{x}\|:=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ where $p>0$. Note that in \mathbb{R}^{m} all norms are equivalent, i.e. there exist $c, C \in \mathbb{R}^{+}$such that

$$
c\|\mathbf{x}\|_{a} \leq\|\mathbf{x}\|_{b} \leq C\|\mathbf{x}\|_{a} \text { for all } \mathbf{x} \in X \text { and likewise } \frac{1}{C}\|\mathbf{x}\|_{b} \leq\|\mathbf{x}\|_{a} \leq \frac{1}{c}\|\mathbf{x}\|_{b}
$$

ℓ_{p} Spaces
Spaces
These are subspaces of $\mathbb{R}^{\mathbb{N}}$ with $\|\mathrm{x}\|:=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$.
Not for all series x_{i} the sum converges, e.g., $x_{i}=\frac{1}{i}$ is in ℓ_{2} but not in ℓ_{1}.
Function Spaces $L_{p}(X)$
We replace sums by integrals over X and obtain $\|f\|:=\left(\int_{X}|f(x)|^{p} d x\right)^{\frac{1}{p}}$. Again, not for all f this integral is defined, i.e. they are not elements of the corresponding $L_{p}(\mathcal{X})$.

Hilbert Spaces

Definition 7 (Dot Product)

Given a vector space \mathcal{X}, a mapping $\langle\cdot, \cdot\rangle$ with $\mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ which for all $\alpha \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$ satisfies

1. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$ (symmetry)
2. $\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$ (linearity)
3. $\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle$ (additivity)

Definition 8 (Hilbert Space)

A complete vector space \mathcal{X}, endowed with a dot product $\langle\cdot, \cdot\rangle$.
The dot product automatically generates a norm (and a metric) by $\|\mathbf{x}\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. Thus Hilbert spaces are special case of a Banach space.

These are the spaces we will work with in this lecture.

Hilbert Spaces: Examples

Euclidean Spaces Use standard dot product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$ given by $\langle\mathbf{x}, \mathbf{y}\rangle:=\sum_{i=1}^{m} x_{i} y_{i}$
Function Spaces $\left(L_{2}(X)\right)$ Functions on X with $f: X \rightarrow \mathbb{C}$ for all $f \in \mathcal{F}$. Here we can define the dot product for $f, g \in \mathcal{F}$ by $\langle f, g\rangle:=\int_{X} \overline{f(x)} g(x) d x$ Note that we take the complex conjugate of f. Also note that all we did was to replace the sum by an integral.
ℓ_{2} (Infinite) series of real numbers, $\ell_{2} \subset \mathbb{R}^{\mathbb{N}}$. We define a dot product for $\mathbf{x}, \mathbf{y} \in \ell_{2}$ by $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}$
Polarization Inequality We can recover the dot product from the norm $\|\mathbf{x}\|$ by computing $\|\mathbf{x}+\mathbf{y}\|^{2}-\|\mathbf{x}\|^{2}-\|\mathbf{y}\|^{2}=2\langle\mathbf{x}, \mathbf{y}\rangle$.

In the following we assume that a matrix $M \in \mathbb{R}^{m \times n}$ corresponds to a linear map from \mathbb{R}^{m} to \mathbb{R}^{n} and is given by its entries $M_{i j} \in \mathbb{R}$.

Symmetry

A symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{i j}=M_{j i}$.

Antisymmetry

An antisymmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{i j}=-M_{j i}$.

Rank

Denote by I the image of \mathbb{R}^{m} under $M \in \mathbb{R}^{m \times n}$. Since M is a linear map, we can find a I as a linear combination of vectors. $\operatorname{rank}(M)$ is the smallest number of such vectors that span I.

Orthogonality

A matrix $M \in \mathbb{R}^{m \times m}$ with $M^{\top} M=1$ is called an orthogonal matrix (if $M \in \mathbb{C}^{m \times m}$ it is called unitary). This means $M^{\top}=M^{-1}$.

Matrices, Part II

Orthogonality, Part II

It consists of mutually orthogonal rows and columns. The corresponding matrix group is often denoted by $\mathrm{O}(m)$ (the orthogonal group). If it is only a rotation, it is called $\mathrm{SO}(m)$ (special orthogonal group).
Note that from $M^{\top} M=\mathbf{1}$ it also follows that $M M^{\top}=\mathbf{1}$ since $M^{\top} M=\mathbf{1} \Rightarrow$ $\left(M M^{\top}\right) M=M$ (and all matrices have full rank).

Example

Rotation matrices in \mathbb{R}^{2} are given by

$$
M=\left[\begin{array}{r}
\cos \phi \\
\sin \phi \\
-\sin \phi \\
\cos \phi
\end{array}\right] \text { here } \operatorname{det} M=1
$$

Mirror matrices are

$$
M=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \text { and } M=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \text { here } \operatorname{det} M=1
$$

Matrix Invariants

Trace:

$\operatorname{tr} M:=\sum_{i=1}^{m} M_{i i}$ One can show $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and thus for symmetric matrices

$$
\operatorname{tr} M=\operatorname{tr}\left(O^{\top} \Lambda O\right)=\operatorname{tr}\left(\Lambda O O^{\top}\right)=\operatorname{tr} \Lambda=\sum_{i=1}^{m} \lambda_{i}
$$

Determinant:

Antisymmetric multinear form, i.e. swapping columns or rows changes the sign, adding elements in rows and columns is linear. Useful form

$$
\operatorname{det} M=\prod_{i=1}^{m} \lambda_{i}
$$

Both trace and determinant are invariant under orthogonal transformations $M \rightarrow O^{\top} M O$ where $O \in \mathrm{SO}(m)$ for of the matrix.

Matrix Norms

Operator Norm

The norm of a linear operator A between two Banach spaces X and y is defined as

$$
\|A\|:=\max _{\mathbf{x} \in \mathrm{X}} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}
$$

This clearly satisfies all conditions of a norm:

- $\|\alpha A\|=\max _{\mathbf{x} \in \mathrm{x}} \frac{\|\alpha A \mathbf{x}\|}{\|\mathbf{x}\|}=|\alpha|\|A\|$.
- $\|A+B\|=\max _{\mathbf{x} \in X} \frac{\|(A+B) \mathbf{x}\|}{\|\mathbf{x}\|} \leq \max _{\mathbf{x} \in x} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}+\max _{\mathbf{x} \in X} \frac{\|B \mathbf{x}\|}{\|\mathbf{x}\|}=\|A\|+\|B\|$
- $\|A\|=0$ implies $\max _{\mathbf{x} \in x} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}=0$ and thus $A \mathbf{x}=0$ for all \mathbf{x}. This means that $A=0$.

Frobenius Norm

For a matrix $M \in \mathbb{R}^{m \times n}$ we can define a norm in analogy to the vector norm by

$$
\|M\|_{\mathrm{Frob}}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i j}^{2}
$$

Definition 9 (Eigenvalues, Eigenvectors)

Denote by $M \in \mathbb{R}^{m \times m}$ matrix, then an eigenvalue $\lambda \in \mathbb{R}$ and eigenvector $\mathbf{x} \in \mathbb{R}^{m}$ satisfy

$$
M \mathrm{x}=\lambda \mathrm{x}
$$

Ananlogously for operators $A: X \rightarrow X$ we have $A \mathbf{x}=\lambda \mathbf{x}$.
Caveat
We cannot always find a complete eigensystem. Example: $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

Symmetric Matrices

All eigenvalues of symmetric matrices are real and symmetric matrices are fully diagonalizable, i.e. we can find m eigenvectors.

Orthogonality:

All eigenvectors of symmetric matrices M with different eigenvalues are mutually orthogonal. Proof: for two eigenvectors \mathbf{x} and \mathbf{x}^{\prime} with eigenalues $\lambda, \lambda^{\prime}$ use

$$
\lambda \mathbf{x}^{\top} \mathbf{x}^{\prime}=(M \mathbf{x})^{\top} \mathbf{x}=\mathbf{x}^{\top}\left(M^{\top} \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top}\left(M \mathbf{x}^{\prime}\right)=\lambda^{\prime} \mathbf{x}^{\top} \mathbf{x}^{\prime} \text { hence } \lambda^{\prime}=\lambda \text { or } \mathbf{x}^{\top} \mathbf{x}^{\prime}=0 .
$$

Matrix Decomposition:

We can decompose symmetric $M \in \mathbb{R}^{m \times m}$ into $O^{\top} \Lambda O$ where $O \in S O(n)$ and $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

Example:

$$
M=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \text { has eigenvalues }(-1,3) \text { and eigenvectors } v_{1}=\left[\begin{array}{l}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], v_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Matrix Norms Revisited

Operator Norm: Using $M \in \mathbb{R}^{m \times m}$ we have

$$
\begin{aligned}
\|M\|^{2} & =\max _{\mathbf{x} \in \mathbb{R}^{m}} \frac{\|M \mathbf{x}\|^{2}}{\|\mathbf{x}\|^{2}} \\
& =\max _{\mathbf{x} \in \mathbb{R}^{m}}^{\operatorname{and}\|\mathbf{x}\|=1}\|M \mathbf{x}\|^{2} \\
& =\max _{\mathbf{x} \in \mathbb{R}^{m} \operatorname{and}\|\mathbf{x}\|=1} \mathbf{x}^{\top} M^{\top} M \mathbf{x} \\
& =\max _{\mathbf{x} \in \mathbb{R}^{m} \max ^{\top}\|\mathbf{x}\|=1}^{\mathbf{x}^{\top} O \Lambda O^{\top} O \Lambda O \mathbf{x}} \\
& =\max _{\mathbf{x}^{\prime} \in \mathbb{R}^{m} \operatorname{and}\left\|\mathbf{x}^{\prime}\right\|=1}^{\mathbf{x}^{\prime \top} \Lambda^{2} \mathbf{x}^{\prime}} \\
& =\max _{i \in[m]} \lambda_{i}^{2}
\end{aligned}
$$

Frobenius Norm: Likewise we obtain

$$
\|M\|_{\text {Frob }}^{2}=\operatorname{tr}\left(M M^{\top}\right)=\operatorname{tr} O \Lambda O^{\top} O \Lambda O^{\top}=\operatorname{tr} \Lambda O^{\top} O \Lambda O^{\top} O=\operatorname{tr} \Lambda^{2}=\sum_{i=1}^{m} \lambda_{i}^{2}
$$

Positive Matrices

Positive Definite Matrix:

A matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^{m}$ we have

$$
\mathbf{x}^{\top} M \mathbf{x} \geq 0 \text { if } \mathbf{x} \neq 0
$$

This matrix has only positive eigenvalues since for all eigenvectors \mathbf{x} we have $\mathbf{x}^{\top} M \mathbf{x}=$ $\lambda \mathbf{x}^{\top} \mathbf{x}=\lambda\|\mathbf{x}\|^{2}>0$ and thus $\lambda>0$.

Induced Norms and Metrices:

Every positive definite matrix induces a norm via

$$
\|\mathbf{x}\|_{M}^{2}:=\mathbf{x}^{\top} M \mathbf{x}
$$

- Linearity is obvious, so is uniqueness
- The triangle inequality can be seen by writing

$$
\left\|\mathbf{x}+\mathbf{x}^{\prime}\right\|_{M}^{2}=\left(\mathbf{x}+\mathbf{x}^{\prime}\right)^{\top} M^{\frac{1}{2}} M^{\frac{1}{2}}\left(\mathbf{x}+\mathbf{x}^{\prime}\right)=\left\|M^{\frac{1}{2}}\left(\mathbf{x}+\mathbf{x}^{\prime}\right)\right\|^{2}
$$

and using the triangle inequality for $M^{\frac{1}{2}} \mathbf{X}$ and $M^{\frac{1}{2}} \mathbf{x}^{\prime}$.

Singular Value Decompositions

Idea:

Can we find something similar to the eigenvalue / eigenvector decomposition for arbitrary matrices?

Decomposition:

Without loss of generality assume $m \geq n$ For $M \in \mathbb{R}^{m \times n}$ we may write M as $U \Lambda O$ where $U \in \mathbb{R}^{m \times n}, O \in \mathbb{R}^{n \times n}$, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
Furthermore $O^{\top} O=O O^{\top}=U^{\top} U=\mathbf{1}$.

Useful Trick:

Nonzero eigenvalues of $M^{\top} M$ and $M M^{\top}$ are the same. This is so since
$M^{\top} M \mathbf{x}=\lambda \mathbf{x}$ and hence $\left(M M^{\top}\right) M \mathbf{x}=\lambda M \mathbf{x}$ or equivalently $\left(M M^{\top}\right) \mathbf{x}^{\prime}=\lambda \mathbf{x}^{\prime}$.

