ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 1 **The due date for these problems is Monday, May 7**

Teaching Period April 30 to June 8, 2001

A Theory (20 Points)

Problem 1 (SVD, Eigenvalues, and Positive Matrices, 6 Points)

Assume an arbitrary matrix $M \in \mathbb{R}^{m \times n}$ with $m \leq n$.

- 1. Show that the matrix MM^{\top} is positive semidefinite.
- 2. Show that the nonzero eigenvalues of $M^{\top}M$ and MM^{\top} are identical. Hint: compute the eigevectors of $M^{\top}M$ from those of MM^{\top} .
- 3. Using the fact that there exist $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{m \times n}$, and a diagonal matrix $\Lambda \in \mathbb{R}^{m \times m}$ for which $M = U\Lambda V$, compute U, Λ, V using the eigenvalue/eigenvector decomposition of $M^{\top}M$ into $O^{\top}\Lambda O$. Here $O \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{m \times m}$ is a diagonal matrix with only positive entries.

Problem 2 (Vector Valued Functions, 8 Points)

Compute the first and second derivatives of the following functions

- 1. $f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$ where $\mathbf{x}, \mathbf{c} \in \mathbb{R}^m$.
- 2. $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}M\mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^m$ and $M \in \mathbb{R}^m$. What happens if $M = M^{\top}$?
- 3. $f(X) = \text{tr } MX \text{ where } M \in \mathbb{R}^{m \times n} \text{ and } X \in \mathbb{R}^{n \times m}.$
- 4. $f(\mathbf{x}) = g(||\mathbf{x}_0 \mathbf{x}||)$ where $g : \mathbb{R}_0^+ \to \mathbb{R}$ and $\mathbf{x}_0, \mathbf{x} \in \mathbb{R}^m$.

Problem 3 (Dot Products of Smooth Functions, 3 Points) Show that the following form is a dot product $(f, g : \mathbb{R} \to \mathbb{R})$

$$\langle f,g \rangle := \int_{\mathbb{R}} f(x)g(x)dx + \int_{\mathbb{R}} f'(x)g'(x)dx.$$

Problem 4 (Hilbert Spaces and Derivatives, 3 Points)

Denote by \mathcal{H} a Hilbert space and by $\langle \cdot, \cdot \rangle$ the dot products in \mathcal{H} .

For $f: \mathcal{H} \to \mathbb{R}$ with $f(x) = \frac{1}{2} ||x||^2$ show that the Gateaux derivative $\frac{d}{dx}f$ is $\frac{d}{dx}f(x) = x$. Compute the second derivative (hint: this will be an operator).

ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Problem Sheet — Week 1 **The due date for these problems is Monday, May 7** Teaching Period April 30 to June 8, 2001

B Programming (20 Points)

Problem 5 (Cholesky Decomposition, 10 Points)

- 1. Write a MATLAB or C/C++ program to decompose an arbitrary positive definite matrix $M \in \mathbb{R}^{m \times m}$ into $M = R^{\top}R$ where $R \in \mathbb{R}^{m \times m}$ is a lower triangular matrix. It should take as input M and output R.
- 2. Write a MATLAB or C/C++ program to solve the problem $M\mathbf{x} = \mathbf{y}$ for a given $\mathbf{y} \in \mathbb{R}^m$. Hint, solve $R^\top \mathbf{x}' = \mathbf{y}$ and then $R\mathbf{x} = \mathbf{x}'$. It should take as input R and \mathbf{x} and output \mathbf{y} .
- 3. What happens if M does not have full rank (bonus question)?

Hint: you can check your results using the chol routine of MATLAB.

Problem 6 (Function Minimization by Interval Cutting, 10 Points)

- 1. Write a MATLAB or C/C++ program to minimize convex functions via interval cutting. It should take as inputs f, f', the initial interval [a, b], where the minimum can be found, and a precision ϵ and return $x_{\min}, f(x_{\min})$, and $f'(x_{\min})$.
- 2. Minimize the function $f(x) = e^{-x} + x^4 + 3(x-10)^2$. Hint: the minimum lies in [-10, 10].
- 3. Plot the function values $f\left(\frac{A+B}{2}\right)$ for f defined as above.

Hint: you can check your results using the fminbnd routine of MATLAB.