http://alex.smola.org/teaching/cmu2013-10-701x/

Carnegie Mellon University

Homework 3 Solutions

1 Probability Inequalities [Jing; 25 pts]

(a)

$$P(\bar{X}_n \ge 0.5) \le \frac{E[\bar{X}_n]}{0.5}$$
$$\le \frac{0.2}{0.5}$$
$$\le \frac{2}{5}$$

(b) First, calculate the variance of a bernoulli random variable: Var(X) = p(1-p).

$$Var(X_i) = 0.2(1 - 0.2)$$

 $Var(X_i) = 0.2(0.8)$
 $Var(X_i) = 0.16 = \frac{4}{25}$

Now, find the bound.

$$P(|\bar{X}_n - E[\bar{X}_n]| \ge k) \le \frac{Var[\bar{X}_n]}{k^2}$$

$$P(|\bar{X}_n - 0.2| \ge 0.3) \le \frac{Var[\frac{1}{n} \sum_{i=1}^n X_i]}{(0.3)^2}$$

$$P(\bar{X}_n \ge 0.5) \le \frac{\left(\frac{1}{n}\right)^2 \sum_{i=1}^n Var(X_i)}{0.09}$$

$$P(\bar{X}_n \ge 0.5) \le \frac{\left(\frac{1}{n}\right)^2 n(0.16)}{0.09}$$

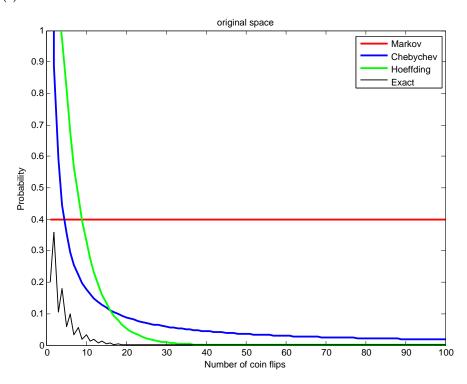
$$P(\bar{X}_n \ge 0.5) \le \frac{100 \cdot 4}{9n \cdot 25}$$

$$P(\bar{X}_n \ge 0.5) \le \frac{16}{9n}$$

(c)

$$P(|\bar{X}_n - E[\bar{X}_n]| \ge \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2}c$$

$$P(|\bar{X}_n - 0.2| \ge 0.3) \le 2e^{-2n(0.3)^2/(1-0)^2}$$

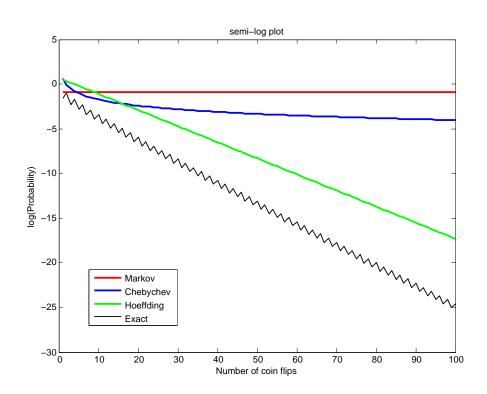

$$P(\bar{X}_n \ge 0.5) \le 2e^{\frac{-2n\cdot9}{100}}$$

$$P(\bar{X}_n \ge 0.5) \le 2e^{\frac{-9n}{50}}$$

http://alex.smola.org/teaching/cmu2013-10-701x/ Carnegie Mellon University

Homework 3 Solutions

(d) and (e)



http://alex.smola.org/teaching/cmu2013-10-701x/

Carnegie Mellon University

Homework 3 Solutions

http://alex.smola.org/teaching/cmu2013-10-701x/

Carnegie Mellon University

Homework 3 Solutions

(g)

(h)

Original Space

• Markov is linear, has a y = b relationship, $y = \frac{2}{5}$.

Semi-log Space

- Markov is linear, has y = log(b), which is still a straight line.
- Hoeffding is linear, because taking the log of an exponential will get you a linear y = ax relationship, where a = -9/50.

log-log Space

- Markov is still linear.
- Chebychev is linear, because $y = x^b$ is a line with slope b = -1