Carnegie Mellon University

Homework 2 Solutions

1 Convexity [Dougal; 25 pts]

1.1 Calculus of convex functions

(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{m}$; define $h_{1}(x)=f(A x+b)$. Then

$$
\begin{aligned}
h_{1}(\lambda x+(1-\lambda) y) & =f(A(\lambda x+(1-\lambda) y)+b) \\
& =f(\lambda A x+(1-\lambda) A y+b) \\
& =f(\lambda[A x+b]+(1-\lambda)[A y+b]) \\
& \leq \lambda f(A x+b)+(1-\lambda) f(A y+b) \\
& =\lambda h_{1}(x)+(1-\lambda) h_{1}(y) .
\end{aligned}
$$

(b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$; define $h_{2}=\max (f, g)$. Then

$$
\begin{aligned}
h_{2}(\lambda x+(1-\lambda) y) & =\max (f(\lambda x+(1-\lambda) y), g(\lambda x+(1-\lambda) y)) \\
& \leq \max (\lambda f(x)+(1-\lambda) f(y), \lambda g(x)+(1-\lambda) g(y)) \\
& \leq \max (\lambda f(x), \lambda g(x))+\max ((1-\lambda) f(y),(1-\lambda) g(y)) \\
& =\lambda \max (f(x), g(x))+(1-\lambda) \max (f(y), g(y)) \\
& =\lambda h_{2}(x)+(1-\lambda) h_{2}(y) .
\end{aligned}
$$

(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ both convex and nondecreasing, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex but not necessarily nondecreasing; define $h_{3}(x)=g(f(x))$. Then

$$
\begin{aligned}
h_{3}(\lambda x+(1-\lambda) y) & =g(f(\lambda x+(1-\lambda) y)) \\
& \leq g(\lambda f(x)+(1-\lambda) f(y)) \\
& \leq \lambda g(f(x))+(1-\lambda) g(f(y)) \\
& =\lambda h_{3}(x)+(1-\lambda) h_{3}(y)
\end{aligned}
$$

1.2 First-order condition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and $\operatorname{dom} f$ be open.
Suppose that f is convex. For any x and y in its domain, $(x, f(x))$ and $(y, f(y))$ are in the epigraph; then $(x+\lambda(y-x), f(x)+\lambda(f(y)-f(x)))$ is also in the epigraph for any $\lambda \in[0,1]$. Thus $x+\lambda(y-x) \in \operatorname{dom} f$, so $\operatorname{dom} f$ must be convex. We also have that

$$
\begin{gathered}
f(x+\lambda(y-x)) \leq f(x)+\lambda(f(y)-f(x)) \\
\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq f(y)-f(x) \\
\frac{f(x+\lambda(y-x))-f(x)}{\lambda(y-x)}(y-x) \leq f(y)-f(x)
\end{gathered}
$$

Taking the limit as $\lambda(y-x) \rightarrow 0$ from above, we get $f^{\prime}(x)(y-x) \leq f(y)-f(x)$ as desired.
Suppose that $\operatorname{dom} f$ is convex and $f(b)-f(a) \geq f^{\prime}(a)(b-a)$ for all points a, b. Then for any $\lambda \in[0,1]$, $x, y \in \operatorname{dom} f, z=\lambda x+(1-\lambda) y \in \operatorname{dom} f$. Then $f(x)-f(z) \geq f^{\prime}(z)(x-z)$ and $f(y)-f(z) \geq f^{\prime}(z)(y-z)$.

Carnegie Mellon University

Homework 2 Solutions

Multiplying the first inequality by λ and the second by $(1-\lambda)$:

$$
\begin{gathered}
\lambda(f(x)-f(z))+(1-\lambda)(f(y)-f(z)) \geq \lambda f^{\prime}(z)(x-z)+(1-\lambda)\left(f^{\prime}(z)(y-z)\right) \\
\lambda f(x)-\lambda f(z)+f(y)-f(z)-\lambda f(y)+\lambda f(z) \geq f^{\prime}(z)[\lambda x-\lambda z+y-z-\lambda y+\lambda z] \\
\lambda f(x)+(1-\lambda) f(y)-f(z) \geq f^{\prime}(z)[\lambda x+(1-\lambda) y-z]=0
\end{gathered}
$$

by the definition of z. Thus $\lambda f(x)+(1-\lambda) f(y) \geq f(x+(1-\lambda) f(y))$, and so $(\lambda f(x)+(1-\lambda) f(y), \lambda f(x)+$ $(1-\lambda) f(y))$ is in the epigraph of f. Since this is true for all $\lambda \in[0,1]$, the epigraph of f must be convex.

1.3 Strict and strong convexity

(a) Let f be an m-strongly convex function. By definition, for any $x, y \in \operatorname{dom} f, \lambda \in[0,1]$:

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y)-\frac{1}{2} m \lambda(1-\lambda)\|x-y\|_{2}^{2} \\
& =\lambda f(x)+(1-\lambda) f(y)-\frac{1}{2} n \lambda(1-\lambda)\|x-y\|_{2}^{2}+\frac{1}{2}(n-m) \lambda(1-\lambda)\|x-y\|_{2}^{2} \\
& \leq \lambda f(x)+(1-\lambda) f(y)-\frac{1}{2} n \lambda(1-\lambda)\|x-y\|_{2}^{2}
\end{aligned}
$$

since $n-m<0$, and $\lambda, 1-\lambda$, and $\|x-y\|_{2}^{2}$ are all nonnegative.
(b) Let f be an m-strongly convex function. By definition, for any $x \neq y \in \operatorname{dom} f, \lambda \in(0,1)$:

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y)-\frac{1}{2} m \lambda(1-\lambda)\|x-y\|_{2}^{2} \\
& <\lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

since $m, \lambda, 1-\lambda$, and $\|x-y\|_{2}^{2}$ are all positive.
(c) One solution is $f(x)=e^{x}$.

- Note that $f^{\prime \prime}(x)=f^{\prime}(x)=f(x)$, so that $\nabla^{2} f(x)=e^{x}>0$ for all x, and by the second-order condition f is strictly convex.
- But f is not m-strongly convex for any m. For that to be true, there would have to be some $m>0$ for which $f^{\prime \prime}(x)>m$ for all x. But then we'd have $f^{\prime \prime}(\log m-1)=e^{\log m-1}=\frac{1}{e} m<m$, a contradiction.

Another possible solution is $f(x)=x^{4}$, a case where we actually have $f^{\prime \prime}(0)=0$. Then:

- $f(x)$ is not m-strongly convex for any m. If it were, there would be an m such that $\nabla^{2} f(x) \succeq m I$ for all $x \in \mathbb{R}$, since f is twice differentiable. But $\nabla^{2} f(x)=12 x^{2}$, which means $\nabla^{2} f(0)=0$.
- $f(x)$ is strictly convex. There may be a nicer proof, but we will verify the first-order condition

$$
\begin{equation*}
(\lambda x+(1-\lambda) y)^{4}<\lambda x^{4}+(1-\lambda) y^{4} \tag{1}
\end{equation*}
$$

for all $\lambda \in(0,1), x \neq y \in \mathbb{R}$.

- First, we can see that x^{4} is $\left(12 \varepsilon^{2}\right)$-strongly convex on (ε, ∞). Thus, by part (b), (1) holds for all $x>0, y>0$.
$-x^{4}$ is also $\left(12 \varepsilon^{2}\right)$-strongly convex on $(-\infty,-\varepsilon)$. So (1) holds for all $x<0, y<0$.

Carnegie Mellon University

Homework 2 Solutions

- Suppose $x>0, y<0,|x| \neq|y|$. Note

$$
(\lambda x+(1-\lambda) y)^{4}=\lambda^{4} x^{4}+4 \lambda^{3} x^{3}(1-\lambda) y+6 \lambda^{2} x^{2}(1-\lambda)^{2} y^{2}+4 \lambda x(1-\lambda)^{3} y^{3}+(1-\lambda)^{4} y^{4}
$$

Since (1) holds for x and $|y|$, we know that

$$
\lambda^{4} x^{4}+4 \lambda^{3} x^{3}(1-\lambda)|y|+6 \lambda^{2} x^{2}(1-\lambda)^{2}|y|^{2}+4 \lambda x(1-\lambda)^{3}|y|^{3}+(1-\lambda)^{4}|y|^{4}<\lambda x^{4}+(1-\lambda)|y|^{4}
$$

But $|y|=-y,|y|^{2}=y^{2},|y|^{3}=-y^{3},|y|=y^{4}$, so we have

$$
\lambda^{4} x^{4}-4 \lambda^{3} x^{3}(1-\lambda) y+6 \lambda^{2} x^{2}(1-\lambda)^{2} y^{2}-4 \lambda x(1-\lambda)^{3} y^{3}+(1-\lambda)^{4} y^{4}<\lambda x^{4}+(1-\lambda) y^{4}
$$

Note that $\lambda^{3} x^{3}(1-\lambda) y<0$, so we can add 8 times that to the LHS without breaking the inequality. The same is true for $\lambda x(1-\lambda)^{3} y^{3}$. We then get

$$
\lambda^{4} x^{4}+4 \lambda^{3} x^{3}(1-\lambda) y+6 \lambda^{2} x^{2}(1-\lambda)^{2} y^{2}+4 \lambda x(1-\lambda)^{3} y^{3}+(1-\lambda)^{4} y^{4}<\lambda x^{4}+(1-\lambda) y^{4}
$$

as desired.

- Suppose $x<0, y>0,|x| \neq|y|$. By symmetry with the last part, (1) holds.
- Suppose $y=-x$. Then

$$
\begin{gathered}
(\lambda x+(1-\lambda) y)^{4}=(\lambda x-(1-\lambda) x)^{4}=(2 \lambda-1)^{4} x^{4} \\
\lambda x^{4}+(1-\lambda) y^{4}=\lambda x^{4}+(1-\lambda) x^{4}=x^{4} .
\end{gathered}
$$

Since $0<\lambda<1,-1<2 \lambda-1<1$. Thus $(2 \lambda-1)^{4}<1$, and $(2 \lambda-1)^{4} x^{4}<x^{4}$, and (1) holds. We have thus shown that (1) holds for all $x, y \in \mathbb{R}$, so that x^{4} is strictly convex.

1.4 Examples

(a) The second derivative of $x^{2}+x^{4}$ is $2+12 x^{2} \geq 2$, so $x^{2}+x^{4}$ is 2-strongly convex on \mathbb{R}.
(b) $x^{2}+x^{4}$ is still strongly-convex on $[1,5]$. It's 14 -strongly convex, in fact, though we didn't ask for the constant.
(c) An arbitrary norm is convex, because $\|\lambda x+(1-\lambda) y\| \leq\|\lambda x\|+\|(1-\lambda) y\|=\lambda\|x\|+(1-\lambda)\|y\|$. It is not necessarily strictly convex; a simple counterexample is the absolute value on \mathbb{R}, where if $x>0$, $y>0$ we have $|\lambda x+(1-\lambda) y|=\lambda x+(1-\lambda) y$.

2 Linear Regression, Again ? [Ahmed; 20 pts]

2.1 Why Lasso Works

(a)

$$
\begin{aligned}
J_{\lambda}(\beta) & =\frac{1}{2}\|y-X \beta\|^{2}+\lambda|\beta|_{1} \\
& =\frac{1}{2}\left(\|y\|^{2}+\beta^{T} X^{T} X \beta-2 y^{T} X \beta\right)+\lambda|\beta|_{1} \\
& =\frac{1}{2}\left(\|y\|^{2}+\|\beta\|^{2}-2 y^{T} X \beta\right)+\lambda|\beta|_{1} \\
& =\frac{1}{2}\|y\|^{2}+\sum_{i=1}^{d}\left(\frac{1}{2} \beta_{i}^{2}-y^{T} X_{. i} \beta_{i}+\lambda\left|\beta_{i}\right|\right)
\end{aligned}
$$

Carnegie Mellon University

Homework 2 Solutions

(b) Note that $d|\beta| / d \beta=1$ iff $\beta>0$. Setting the partial derivative of the objective function w.r.t β_{j} to 0 we get

$$
\frac{\partial}{\partial \beta_{j}} J_{\lambda}(\beta)=\frac{\partial}{\partial \beta_{j}} f\left(X_{. j}, y, \beta_{j}, \lambda\right)=\beta_{j}-y^{T} X_{. j}+\lambda=0
$$

, which gives

$$
\beta_{j}^{*}=y^{T} X_{. j}-\lambda
$$

(c) Note that $d|\beta| / d \beta=1$ iff $\beta<0$. Using the same procedure we can show that

$$
\beta_{j}^{*}=y^{T} X_{. j}+\lambda
$$

(d) $\beta_{j}^{*}=0$ what it can neither be greater then or less than 0 - that is, when

$$
\begin{array}{r}
y^{T} X_{. j}-\lambda<0 \\
y^{T} X_{. j}+\lambda>0
\end{array}
$$

which can be formulated as

$$
\left|y^{T} X_{. j}\right|<\lambda
$$

Note that $y^{T} X_{. j}$ indicates how much $X_{. j}$ and y are (anti)correlated- that is, how strong $X_{. j}$ is as a predictor for y. This condition means that β_{j}^{*} will be set to 0 if the corresponding feature is not (anti)correlated enough with the output.
(e) Setting the partial derivative of the objective function w.r.t β_{j} to 0 we get

$$
\beta_{j}-y^{T} X_{. j}+\lambda \beta_{j}=0
$$

which means $\beta_{j}^{*}=0$ iff $y^{T} X_{. j}$ is exactly 0 . This is a much stronger condition than the lasso case.

2.2 Kernel Ridge Regression

(a) One way to show it is to write β^{*} as $X^{T} c$ for some vector c :

$$
\begin{aligned}
\left(X^{T} X+\lambda I\right) \beta^{*} & =X^{T} y \\
\beta^{*}=\lambda^{-1}\left(X^{T} y-X^{T} X \beta^{*}\right)=X^{T}\left(\lambda^{-1}\left(y-X \beta^{*}\right)\right) & =X^{T} c
\end{aligned}
$$

where

$$
c=\lambda^{-1}\left(y-X \beta^{*}\right)
$$

Another way is to use the orthogonal decomposition $\beta=\beta_{\|}+\beta_{\perp}$ where β_{\perp} is the component orthogonal to all training points. Then $X \beta_{\perp}=0$ and we get

$$
J(\beta)=\frac{1}{2}\left\|y-X \beta_{\|}-X \beta_{\perp}\right\|^{2}+\frac{1}{2}\left\|\beta_{\|}\right\|^{2}+\frac{1}{2}\left\|\beta_{\perp}\right\|^{2} \geq J\left(\beta_{\|}\right)
$$

with equality holding only if $\beta_{\perp}=0$, which means that unless $\beta_{\perp}=0, \beta$ cannot be optimal.

Carnegie Mellon University

Homework 2 Solutions

(b) Note that $\beta=X^{T} \alpha$

$$
\begin{aligned}
\left(X^{T} X+\lambda I\right) \beta^{*} & =X^{T} y \\
\left(X^{T} X+\lambda I\right) X^{T} \alpha^{*} & =X^{T} y \\
X^{T} X X^{T} \alpha^{*}+\lambda X^{T} \alpha^{*} & =X^{T} y \\
X^{T}\left(X X^{T}+\lambda I\right) \alpha^{*} & =X^{T} y
\end{aligned}
$$

The last equality shown α^{*} given by

$$
\left(X X^{T}+\lambda I\right) \alpha^{*}=y
$$

results in the optimal β^{*}, which is the desired result. The part that depends on training inputs is $X X^{T}$, but $\left(X X^{T}\right)_{i, j}=\left\langle x_{i}, x_{j}\right\rangle$
(c)

$$
\hat{f}(x)=\beta^{T} x=\sum_{i} \alpha_{i} x_{i}^{T} x=\sum_{i} \alpha_{i}\left\langle x_{i}, x\right\rangle
$$

(d) For non-kernelized version we need d numbers to store β, for the kernelized version we need n numbers to store α and $n \times d$ numbers to store training inputs.

