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Homework 2 Solutions

1 Convexity [Dougal; 25 pts]

1.1 Calculus of convex functions

(a) Let f : Rn → R, A ∈ Rn×m, b ∈ Rm; define h1(x) = f(Ax+ b). Then

h1(λx+ (1− λ)y) = f(A(λx+ (1− λ)y) + b)

= f(λAx+ (1− λ)Ay + b)

= f(λ[Ax+ b] + (1− λ)[Ay + b])

≤ λf(Ax+ b) + (1− λ)f(Ay + b)

= λh1(x) + (1− λ)h1(y).

(b) Let f : Rn → R, g : Rn → R; define h2 = max(f, g). Then

h2(λx+ (1− λ)y) = max (f(λx+ (1− λ)y), g(λx+ (1− λ)y))
≤ max (λf(x) + (1− λ)f(y), λg(x) + (1− λ)g(y))
≤ max (λf(x), λg(x)) + max ((1− λ)f(y), (1− λ)g(y))
= λmax (f(x), g(x)) + (1− λ)max (f(y), g(y))

= λh2(x) + (1− λ)h2(y).

(c) Let g : R→ R both convex and nondecreasing, f : Rn → R convex but not necessarily nondecreasing;
define h3(x) = g(f(x)). Then

h3(λx+ (1− λ)y) = g(f(λx+ (1− λ)y))
≤ g(λf(x) + (1− λ)f(y))
≤ λg(f(x)) + (1− λ)g(f(y))
= λh3(x) + (1− λ)h3(y).

1.2 First-order condition

Let f : R→ R be continuously differentiable and dom f be open.
Suppose that f is convex. For any x and y in its domain, (x, f(x)) and (y, f(y)) are in the epigraph; then

(x + λ(y − x), f(x) + λ(f(y) − f(x))) is also in the epigraph for any λ ∈ [0, 1]. Thus x + λ(y − x) ∈ dom f ,
so dom f must be convex. We also have that

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x))
f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x)

f(x+ λ(y − x))− f(x)
λ(y − x)

(y − x) ≤ f(y)− f(x)

Taking the limit as λ(y − x)→ 0 from above, we get f ′(x) (y − x) ≤ f(y)− f(x) as desired.
Suppose that dom f is convex and f(b) − f(a) ≥ f ′(a) (b − a) for all points a, b. Then for any λ ∈ [0, 1],

x, y ∈ dom f , z = λx + (1 − λ)y ∈ dom f . Then f(x) − f(z) ≥ f ′(z)(x − z) and f(y) − f(z) ≥ f ′(z)(y − z).
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Multiplying the first inequality by λ and the second by (1− λ):

λ(f(x)− f(z)) + (1− λ)(f(y)− f(z)) ≥ λf ′(z)(x− z) + (1− λ)(f ′(z)(y − z))
λf(x)− λf(z) + f(y)− f(z)− λf(y) + λf(z) ≥ f ′(z) [λx− λz + y − z − λy + λz]

λf(x) + (1− λ)f(y)− f(z) ≥ f ′(z) [λx+ (1− λ)y − z] = 0

by the definition of z. Thus λf(x) + (1− λ)f(y) ≥ f(x+ (1− λ)f(y)), and so (λf(x) + (1− λ)f(y), λf(x) +
(1− λ)f(y)) is in the epigraph of f . Since this is true for all λ ∈ [0, 1], the epigraph of f must be convex.

1.3 Strict and strong convexity

(a) Let f be an m-strongly convex function. By definition, for any x, y ∈ dom f, λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
mλ(1− λ)‖x− y‖22

= λf(x) + (1− λ)f(y)− 1

2
nλ(1− λ)‖x− y‖22 +

1

2
(n−m)λ(1− λ)‖x− y‖22

≤ λf(x) + (1− λ)f(y)− 1

2
nλ(1− λ)‖x− y‖22

since n−m < 0, and λ, 1− λ, and ‖x− y‖22 are all nonnegative.

(b) Let f be an m-strongly convex function. By definition, for any x 6= y ∈ dom f, λ ∈ (0, 1):

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
mλ(1− λ)‖x− y‖22

< λf(x) + (1− λ)f(y)

since m, λ, 1− λ, and ‖x− y‖22 are all positive.

(c) One solution is f(x) = ex.

• Note that f ′′(x) = f ′(x) = f(x), so that ∇2f(x) = ex > 0 for all x, and by the second-order
condition f is strictly convex.

• But f is notm-strongly convex for anym. For that to be true, there would have to be somem > 0
for which f ′′(x) > m for all x. But then we’d have f ′′(logm − 1) = elogm−1 = 1

em < m, a
contradiction.

Another possible solution is f(x) = x4, a case where we actually have f ′′(0) = 0. Then:

• f(x) is not m-strongly convex for any m. If it were, there would be an m such that∇2f(x) � mI
for all x ∈ R, since f is twice differentiable. But∇2f(x) = 12x2, which means∇2f(0) = 0.

• f(x) is strictly convex. There may be a nicer proof, but we will verify the first-order condition

(λx+ (1− λ)y)4 < λx4 + (1− λ)y4 (1)

for all λ ∈ (0, 1), x 6= y ∈ R.

– First, we can see that x4 is (12ε2)-strongly convex on (ε,∞). Thus, by part (b), (1) holds for
all x > 0, y > 0.

– x4 is also (12ε2)-strongly convex on (−∞,−ε). So (1) holds for all x < 0, y < 0.
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– Suppose x > 0, y < 0, |x| 6= |y|. Note

(λx+ (1− λ)y)4 = λ4x4 + 4λ3x3(1− λ)y + 6λ2x2(1− λ)2y2 + 4λx(1− λ)3y3 + (1− λ)4y4.

Since (1) holds for x and |y|, we know that

λ4x4 + 4λ3x3(1− λ)|y|+ 6λ2x2(1− λ)2|y|2 + 4λx(1− λ)3|y|3 + (1− λ)4|y|4 < λx4 + (1− λ)|y|4.

But |y| = −y, |y|2 = y2, |y|3 = −y3, |y| = y4, so we have

λ4x4 − 4λ3x3(1− λ)y + 6λ2x2(1− λ)2y2 − 4λx(1− λ)3y3 + (1− λ)4y4 < λx4 + (1− λ)y4.

Note that λ3x3(1 − λ)y < 0, so we can add 8 times that to the LHS without breaking the
inequality. The same is true for λx(1− λ)3y3. We then get

λ4x4 + 4λ3x3(1− λ)y + 6λ2x2(1− λ)2y2 + 4λx(1− λ)3y3 + (1− λ)4y4 < λx4 + (1− λ)y4

as desired.
– Suppose x < 0, y > 0, |x| 6= |y|. By symmetry with the last part, (1) holds.
– Suppose y = −x. Then

(λx+ (1− λ)y)4 = (λx− (1− λ)x)4 = (2λ− 1)4x4

λx4 + (1− λ)y4 = λx4 + (1− λ)x4 = x4.

Since 0 < λ < 1, −1 < 2λ− 1 < 1. Thus (2λ− 1)4 < 1, and (2λ− 1)4x4 < x4, and (1) holds.
We have thus shown that (1) holds for all x, y ∈ R, so that x4 is strictly convex.

1.4 Examples

(a) The second derivative of x2 + x4 is 2 + 12x2 ≥ 2, so x2 + x4 is 2-strongly convex on R.

(b) x2 + x4 is still strongly-convex on [1, 5]. It’s 14-strongly convex, in fact, though we didn’t ask for the
constant.

(c) An arbitrary norm is convex, because ‖λx + (1 − λ)y‖ ≤ ‖λx‖ + ‖(1 − λ)y‖ = λ‖x‖ + (1 − λ)‖y‖. It
is not necessarily strictly convex; a simple counterexample is the absolute value on R, where if x > 0,
y > 0 we have |λx+ (1− λ)y| = λx+ (1− λ)y.

2 Linear Regression, Again ? [Ahmed; 20 pts]

2.1 Why Lasso Works

(a)

Jλ(β) =
1

2
‖y −Xβ‖2 + λ|β|1

=
1

2
(‖y‖2 + βTXTXβ − 2yTXβ) + λ|β|1

=
1

2
(‖y‖2 + ‖β‖2 − 2yTXβ) + λ|β|1

=
1

2
‖y‖2 +

d∑
i=1

(
1

2
β2
i − yTX.iβi + λ|βi|

)

3

http://alex.smola.org/teaching/cmu2013-10-701x/


Machine Learning 10-701 due October 17, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/

Carnegie Mellon University

Homework 2 Solutions

(b) Note that d|β|/dβ = 1 iff β > 0. Setting the partial derivative of the objective function w.r.t βj to 0 we
get

∂

∂βj
Jλ(β) =

∂

∂βj
f(X.j , y, βj , λ) = βj − yTX.j + λ = 0

, which gives

β∗j = yTX.j − λ

(c) Note that d|β|/dβ = 1 iff β < 0. Using the same procedure we can show that

β∗j = yTX.j + λ

(d) β∗j = 0 what it can neither be greater then or less than 0– that is, when

yTX.j − λ < 0,

yTX.j + λ > 0

which can be formulated as

|yTX.j | < λ

Note that yTX.j indicates how much X.j and y are (anti)correlated– that is, how strong X.j is as
a predictor for y. This condition means that β∗j will be set to 0 if the corresponding feature is not
(anti)correlated enough with the output.

(e) Setting the partial derivative of the objective function w.r.t βj to 0 we get

βj − yTX.j + λβj = 0

which means β∗j = 0 iff yTX.j is exactly 0. This is a much stronger condition than the lasso case.

2.2 Kernel Ridge Regression

(a) One way to show it is to write β∗ as XT c for some vector c:

(XTX + λI)β∗ = XT y

β∗ = λ−1(XT y −XTXβ∗) = XT (λ−1(y −Xβ∗)) = XT c,

where

c = λ−1(y −Xβ∗)

Another way is to use the orthogonal decomposition β = β‖+β⊥ where β⊥ is the component orthog-
onal to all training points. Then Xβ⊥ = 0 and we get

J(β) =
1

2
‖y −Xβ‖ −Xβ⊥‖2 +

1

2
‖β‖‖2 +

1

2
‖β⊥‖2 ≥ J(β‖),

with equality holding only if β⊥ = 0, which means that unless β⊥ = 0, β cannot be optimal.
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(b) Note that β = XTα

(XTX + λI)β∗ = XT y

(XTX + λI)XTα∗ = XT y

XTXXTα∗ + λXTα∗ = XT y

XT (XXT + λI)α∗ = XT y

The last equality shown α∗ given by

(XXT + λI)α∗ = y,

results in the optimal β∗, which is the desired result. The part that depends on training inputs is
XXT , but (XXT )i,j = 〈xi, xj〉

(c)

f̂(x) = βTx =
∑
i

αix
T
i x =

∑
i

αi〈xi, x〉

(d) For non-kernelized version we need d numbers to store β, for the kernelized version we need n num-
bers to store α and n× d numbers to store training inputs.
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