Kernel Properties - Convexity

Leila Wehbe

October 1st 2013

Kernel Properties

- data is not linearly separable \rightarrow use feature vector of the data $\Phi(x)$ in another space
- we can even use infinite feature vectors
- because of the Kernel trick you will not have to explicitly compute the feature vectors $\Phi(x)$. (you will Kernelize an algorithms in HW2).

Kernels

- dot product in feature space $k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$
- we can write the kernel in matrix form over the data sample: $K_{i j}=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=k\left(x, x^{\prime}\right)$. This is called a Gram matrix.
- K is positive semi-definite, i.e. $\alpha K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^{m}$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof (from class):

$$
\begin{aligned}
\sum_{i, j}^{m} \alpha_{i} \alpha_{j} K_{i j} & =\sum_{i, j}^{m} \alpha_{i} \alpha_{j}\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle \\
& =\left\langle\sum_{i}^{m} \alpha_{i} \Phi\left(x_{i}\right), \sum_{j}^{m} \alpha_{j} \Phi\left(x_{j}\right)\right\rangle=\left\|\sum_{i}^{m} \alpha_{i} \Phi\left(x_{i}\right)\right\|^{2} \geq 0
\end{aligned}
$$

Kernels

- by mercer's theorem, any symmetric, square integrable function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ that satisfies

$$
\int_{\mathcal{X} \times \mathcal{X}} k\left(x, x^{\prime}\right) f(x) f\left(x^{\prime}\right) d x d x^{\prime} \geq 0
$$

there exist a feature space $\Phi(x)$ and a $\lambda \geq 0$
$k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)\left(\right.$ we have $\left.k\left(x, x^{\prime}\right)=\left\langle\Phi^{\prime}(x), \Phi^{\prime}\left(x^{\prime}\right)\right\rangle\right)$

- in discrete space: $\sum_{i} \sum_{j} K\left(x_{i}, x_{j}\right) c_{i} c_{j}$
any Gram matrix derived of a kernel k is positive semi definite $\leftrightarrow k$ is a valid kernel (dot product)

Exercices

$k\left(x, x^{\prime}\right)$ is a valid kernel

- show that $f(x) f\left(x^{\prime}\right) k\left(x, x^{\prime}\right)$ is a kernel

Exercices

Answer:

$$
\begin{aligned}
f(x) f(y) k(x, y) & =f(x) f(y)<\phi(x), \phi(y)>=<f(x) \phi(x), f(y) \phi(y)> \\
& =<\phi^{\prime}(x), \phi^{\prime}(y)>
\end{aligned}
$$

Exercices

$k_{1}\left(x, x^{\prime}\right), k_{2}\left(x, x^{\prime}\right)$ are valid kernels

- show that $c_{1} * k_{1}\left(x, x^{\prime}\right)+c_{2} * k_{2}\left(x, x^{\prime}\right)$, where $c_{1}, c_{2} \geq 0$ is a valid Kernel (multiple ways to show it)

Exercices

Answer 1:
For any function $f($.$) :$

$$
\begin{aligned}
& \int_{x, x^{\prime}} f(x) f\left(x^{\prime}\right)\left[c_{1} k_{1}\left(x, x^{\prime}\right)+c_{2} k_{2}\left(x, x^{\prime}\right)\right] d x d x^{\prime} \\
& =c_{1} \int_{x, x^{\prime}} f(x) f\left(x^{\prime}\right) k_{1}\left(x, x^{\prime}\right) d x d x^{\prime}+c_{2} \int_{x, x^{\prime}} f(x) f\left(x^{\prime}\right) k_{2}\left(x, x^{\prime}\right) d x d x^{\prime} \geq 0
\end{aligned}
$$

since $\int_{x, x^{\prime}} f(x) f\left(x^{\prime}\right) k_{1}\left(x, x^{\prime}\right) d x d x^{\prime} \geq 0$ and
$\int_{x, x^{\prime}} f(x) f\left(x^{\prime}\right) k_{2}\left(x, x^{\prime}\right) d x d x^{\prime} \geq 0$ since k_{1} and k_{2} are valid kernels.

Exercices

Answer 2:
Here is another way to prove it:

- Given any final set of instances $\left\{x_{1}, \ldots, x_{n}\right\}$, let K_{1} (resp., K_{2}) be the $n \times n$ Gram matrix associated with k_{1} (resp., k_{2}). The Gram matrix associated with $c_{1} k_{1}+c_{2} k_{2}$ is just $K=c_{1} K_{1}+c_{2} K_{2}$.
- K is PSD because any $v \in \mathbb{R}^{n}$, $v^{T}\left(c_{1} K_{1}+c_{2} K_{2}\right) v=c_{1}\left(v^{T} K_{1} v\right)+c_{2}\left(v^{T} K_{2} v\right) \geq 0$ as $v^{T} K_{1} v \geq 0$ and $v^{T} K_{2} v \geq 0$ follows from K_{1} and K_{2} being positive semi definite.
- k is a valid kernel.

Exercices

Answer 3:

 let Φ^{1} and Φ^{2} be the feature vectors associated with k_{1} and k_{2} respectively.Take vector Φ which is the concatenation of $\sqrt{c_{1}} \Phi^{1}$ and $\sqrt{c_{2}} \Phi^{2}$.
i.e. $\Phi(x)=$
$\left[\sqrt{c_{1}} \phi_{1}^{1}(x), \sqrt{c_{1}} \phi_{2}^{1}(x), \ldots \sqrt{c_{1}} \phi_{m}^{1}(x), \sqrt{c_{2}} \phi_{1}^{2}(x), \sqrt{c_{2}} \phi_{2}^{2}(x), \ldots \sqrt{c_{2}} \phi_{m}^{2}(x)\right]$. It's easy to check that

$$
\begin{aligned}
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle & =\sum_{i=1}^{N} \phi_{i}(x) \times \phi_{i}\left(x^{\prime}\right)=c_{1} \sum_{i=1}^{m} \phi_{i}^{1}(x) \times \phi_{i}^{1}\left(x^{\prime}\right) \\
& =c_{1}\left\langle\Phi^{1}(x), \Phi^{1}\left(x^{\prime}\right)\right\rangle+c_{2}\left\langle\Phi^{2}(x), \Phi^{2}\left(x^{\prime}\right)\right\rangle \\
& =c_{1} k_{1}\left(x, x^{\prime}\right)+c_{2} k_{2}\left(x, x^{\prime}\right)=k\left(x, x^{\prime}\right)
\end{aligned}
$$

therefore k is a valid kernel.

Exercices

k_{1}, k_{2} are valid kernels

- show that $k_{1}\left(x, x^{\prime}\right)-k_{2}\left(x, x^{\prime}\right)$ is not necessarily a kernel

Exercices

Proof by counter example:
Consider the kernel k_{1} being the identity $\left(k_{1}\left(x, x^{\prime}\right)=1\right.$ iff $x=x^{\prime}$ and $=0$ otherwise), and k_{2} being twice the identity $\left(k_{1}\left(x, x^{\prime}\right)=2\right.$ iff $x=x^{\prime}$ and $=0$ otherwise).
Let $K_{1}=I_{p}$ be the $p \times p$ identity matrix and $K_{p}=2 I_{p}$ be 2 times that identity matrix. K_{1} and K_{2} are the Gram matrices associated with k_{1} and k_{2} respectively. Clearly both K_{1} and K_{2} are positive semi definite, however $K_{1}-K_{2}=-I$ is not, as its eigenvalues are -1 .
Therefore k is not a valid kernel.

Exercices

PSD matrices A and B

- show that $A B$ is not necessarily PSD

Exercices

for PSD matrices A and B, it suffices to show that $A B$ is not symmetric - so just use $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & 1 \\ 1 & 2\end{array}\right)$; here $A B=\left(\begin{array}{ll}2 & 1 \\ 2 & 4\end{array}\right)$ which is not symmetric.

Exercices

k_{1}, k_{2} are valid kernels

- show that the element wise product $k\left(x_{i}, x_{j}\right)=k_{1}\left(x_{i}, x_{j}\right) \times k_{2}\left(x_{i}, x_{j}\right)$ is a valid kernel.
- start by showing that if matrices A and B are PSD, then $C_{i j}=A_{i j} \times B_{i j}$ is PSD

Exercices

Answer: First show that C s.t. $C_{i j}=A_{i j} \times B_{i j}$ is PSD:
One way to show it:
(1) Any PSD matrix Q is a covariance matrix.

To see this, think of a p-dimensional random variable \mathbf{x} with a covariance matrix \mathbf{I}_{p}, the identity matrix. (Q is $p \times p$) Because Q is PSD it admits a non-negative symmetric square root $Q^{\frac{1}{2}}$.
Then:

$$
\left.\operatorname{cov}\left(Q^{\frac{1}{2}} \mathbf{x}\right)=Q^{\frac{1}{2}} \operatorname{cov}(\mathbf{x})\right) Q^{\frac{1}{2}}=Q^{\frac{1}{2}} \mathbf{I} Q^{\frac{1}{2}}=Q
$$

And therefore Q is a covariance matrix.
(2) We also know that any covariance matrix is PSD. So given A and B PSD, we know that they are covariance matrices. We want to show that C is also a covariance matrix and therefore PSD.

Exercices

(3) Let $u=\left(u_{1}, \ldots, u_{n}\right)^{T} \sim N\left(0_{p}, A\right)$ and
$v=\left(v_{1}, \ldots, v_{n}\right)^{T} \sim N\left(0_{p}, B\right)$ where $0+p$ is a p-dimensional vector of zeros
Define the vector $w=\left(u_{1} v_{1}, \ldots, u_{n} v_{n}\right)^{T}$

$$
\operatorname{cov}(w)=E\left[\left(w-\mu^{w}\right)\left(w-\mu^{w}\right)^{T}\right]=E\left[w w^{T}\right]
$$

This is because $\mu_{i}^{w}=0$ for all i. This is because u and v are independent so $\mu^{v}=\mu^{u} \times \mu^{v}=0_{p}$

$$
\begin{aligned}
\operatorname{cov}(w)_{i, j} & =E\left[w_{i} w_{j}^{T}\right]=E\left[\left(u_{i} v_{i}\right)\left(u_{j} v_{j}\right)\right]=E\left[\left(u_{i} u_{j}\right)\left(v_{i} v_{j}\right)\right] \\
& =E\left[u_{i} u_{j}\right] E\left[v_{i} v_{j}\right]
\end{aligned}
$$

This is again because u and v are independent.

$$
\operatorname{cov}(w)_{i, j}=E\left[u_{i} u_{j}\right] E\left[v_{i} v_{j}\right]=A_{i, j} \times B_{i, j}=C_{i, j}
$$

Exercices

(0) Therefore C is a covariance matrix and therefore PSD
(0) Since any kernel matrix created from $k\left(x_{i}, x_{j}\right)=k_{1}\left(x_{i}, x_{j}\right) \times k_{2}\left(x_{i}, x_{j}\right)$ is PSD, then k is PSD.

Exercices

A is PSD

- show that A^{m} is PSD

Exercices

Answer:
Recall $A=U D U^{T}$
First we show that $A^{m}=U D^{m} U^{T}$.
Proof by induction:

- trivially true for $m=1$.
- $A^{m+1}=A A^{m}=U D U^{T}\left(U D^{m} U^{T}\right)=U D\left(U^{T} U\right) D^{m} U^{T}=$ $U D D^{m} U^{T}=U D^{m+1} U^{T}$

Hence, the eigenvalues of A^{m} are the diagonal elements of D^{m}, which are λ_{i}^{m} (where $\left\{\lambda_{i}\right\}$ are the diagonal elements of D). Since $\lambda_{i} \geq 0$, these eigenvalues λ_{i}^{m} are also ≥ 0. This means A^{m} is PSD.

Exercices

$k\left(x, x^{\prime}\right)$ is a valid kernel

- show that $k(x, y)^{2} \leq k(x, x) k(y, y)$

Exercices

Answer:

$$
\begin{aligned}
k(x, y)^{2} & =<\phi(x), \phi(y)>^{2}=\|\phi(x)\|^{2}\|\phi(y)\|^{2}\left(\cos \left(\theta_{\phi(x), \phi(y)}\right)\right)^{2} \\
& \leq\|\phi(x)\|^{2}\|\phi(y)\|^{2}=k(x, x) k(y, y)
\end{aligned}
$$

Introduction to Convex Optimization

Xuezhi Wang

Computer Science Department
Carnegie Mellon University

10701-recitation, Jan 29

Outline

(1) Convexity

- Convex Sets
- Convex Functions
(2) Unconstrained Convex Optimization
- First-order Methods
- Newton's Method

Outline

(1) Convexity

- Convex Sets
- Convex Functions
(2) Unconstrained Convex Optimization
- First-order Methods
- Newton's Method

Convex Sets

- Definition

For $x, x^{\prime} \in X$ it follows that $\lambda x+(1-\lambda) x^{\prime} \in X$ for $\lambda \in[0,1]$

- Examples
- Empty set \emptyset, single point $\left\{x_{0}\right\}$, the whole space \mathbb{R}^{n}
- Hyperplane: $\left\{x \mid a^{\top} x=b\right\}$, halfspaces $\left\{x \mid a^{\top} x \leq b\right\}$
- Euclidean balls: $\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}$
- Positive semidefinite matrices: $\mathbf{S}_{+}^{n}=\left\{A \in \mathbf{S}^{n} \mid A \succeq 0\right\}\left(\mathbf{S}^{n}\right.$ is the set of symmetric $n \times n$ matrices)

Convexity Preserving Set Operations

Convex Set C, D

- Translation $\{x+b \mid x \in C\}$
- Scaling $\{\lambda x \mid x \in C\}$
- Affine function $\{A x+b \mid x \in C\}$
- Intersection $C \cap D$
- Set sum $C+D=\{x+y \mid x \in C, y \in D\}$

Outline

(1) Convexity

- Convex Sets
- Convex Functions
(2) Unconstrained Convex Optimization
- First-order Methods
- Newton's Method

Convex Functions

dom f is convex, $\lambda \in[0,1]$

$$
\lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y)
$$

- First-order condition: if f is differentiable,

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)
$$

- Second-order condition: if f is twice differentiable,

$$
\nabla^{2} f(x) \succeq 0
$$

- Strictly convex: $\nabla^{2} f(x) \succ 0$

Strongly convex: $\nabla^{2} f(x) \succeq d l$ with $d>0$

Convex Functions

A quick matrix calculus reference: http://www.ee.ic.ac. uk/hp/staff/dmb/matrix/calculus.html

Convex Functions

- Below-set of a convex function is convex:

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \\
& \text { hence } \lambda x+(1-\lambda) y \in X \text { for } x, y \in X
\end{aligned}
$$

- Convex functions don't have local minima:

Proof by contradiction:
linear interpolation breaks local minimum condition

- Convex Hull:
$\operatorname{Conv}(X)=\left\{\bar{x} \mid \bar{x}=\sum \alpha_{i} x_{i}\right.$ where $\alpha_{i} \geq 0$ and $\left.\sum \alpha_{i}=1\right\}$ Convex hull of a set is always a convex set

Convex Functions examples

- Exponential. $e^{a x}$ convex on \mathbb{R}, any $a \in \mathbb{R}$
- Powers. x^{a} convex on \mathbb{R}_{++}when $a \geq 1$ or $a \leq 0$, and concave for $0 \leq a \leq 1$.
- Powers of absolute value. $|x|^{p}$ for $p \geq 1$, convex on \mathbb{R}.
- Logarithm. $\log x$ concave on \mathbb{R}_{++}.
- Norms. Every norm on \mathbb{R}^{n} is convex.
- $f(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}$ convex on \mathbb{R}^{n}
- Log-sum-exp. $f(x)=\log \left(e^{x_{1}}+\ldots+e^{x_{n}}\right)$ convex on \mathbb{R}^{n}.

Convexity Preserving Function Operations

Convex function $f(x), g(x)$

- Nonnegative weighted sum: $a f(x)+b g(x)$
- Pointwise Maximum: $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$
- Composition with affine function: $f(A x+b)$
- Composition with nondecreasing convex $g: g(f(x))$

Outline

Convexity
 - Convex Sets
 - Convex Functions

(2) Unconstrained Convex Optimization

- First-order Methods
- Newton's Method

Gradient Descent

given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$
2. Choose step size t via exact or backtracking line search.
3. update. $x:=x+t \Delta x$.

Until stopping criterion is satisfied.

- Key idea
- Gradient points into descent direction
- Locally gradient is good approximation of objective function
- Gradient Descent with line search
- Get descent direction
- Unconstrained line search
- Exponential convergence for strongly convex objective

Outline

(1) Convexity

- Convex Sets
- Convex Functions
(2) Unconstrained Convex Optimization
- First-order Methods
- Newton's Method

Newton's method

- Convex objective function f
- Nonnegative second derivative

$$
\partial_{x}^{2} f(x) \succeq 0
$$

- Taylor expansion

$$
f(x+\delta)=f(x)+\delta^{\top} \partial_{x} f(x)+\frac{1}{2} \delta^{\top} \partial_{x}^{2} f(x) \delta+O\left(\delta^{3}\right)
$$

- Minimize approximation \& iterate til converged

$$
x \leftarrow x-\left[\partial_{x}^{2} f(x)\right]^{-1} \partial_{x} f(x)
$$

