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Convexity Reference

This document is just a reference for various properties of convexity, some of which may be useful for
Homework 2. It's meant to make your life easier by not having to cross-reference things from various
different sources.

Convex set Recall that the a set C is convex if for all pairs of points = and y in C, and for any A € [0, 1],
the point Az + (1 — )y isalsoin C.

Function extensions When talking about convex functions and optimization, it is often convenient to
consider the extension of a function to all of R”, where the function’s value is co on points outside its
domain. Thus a given function f : A — R, where A C R", can be extended to f : R — RU {0} as

Flo) — f(z) x€domf
/(@) {oo x ¢ dom f

where dom f is the domain of f. In this document (and on the homework), we will assume that all functions
have been thus extended. This allows us to simplify our notation. Note that minimizing f is identical to
minimizing f. The advantage comes from allowing us to say, for example, simply h = f + g rather than
h(z) = f(z) + g(x) if z € dom f N dom g. We now define dom f to be {z : f(z) < oo} (so that dom is not
quite the traditional definition of domain).

Convex functions The epigraph is the region of a plot of f that lies above the function:

epi f = {(x,1) | v € dom f,¢ > f()}.

We call a function convex if its epigraph is a convex set.
This condition is equivalent to the statement that chords (line segments connecting the points (z, f(x))
and (y, f(y))) lie above the function:

fAz+ (1 =Ny <Af(x)+ (1 =N f(y) forallXe[0,1]. (1)
Make sure you understand why this is true.

One reason we care about convex functions is that any local minima must also be global minima (why?).
Note that the minimum may not be unique, but if there are multiple minima they must form a convex set.
Calculus of convex functions All of the following functions are convex:

(@) af(zx) for convex f and a > 0.

(b) f(Az + b) for convex f, matrix A, and vector b.

(¢) f(z)+ g(x) for convex f and g.

(d) max(f(x),g(x)) for convex f and g.

(e) g(f(z)) for convex f with range A C R and g : A — R both convex and non-decreasing.

(f) sup,cc f(z,2) for f: R™ x R™ — R convex in z, C' a convex subset of dom f.
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First-order condition A function f differentiable on the interior of its domain int dom f is convex iff

dom(f) is convex and f(y) — f(x) > Vf(z)" (y — z) for all 2,y € int dom(f) )
where V f(z)7T is the gradient as a row vector, [%(m) . %(m)} .

This is equivalent to the condition that tangent planes lie below (or on) the function; make sure you
understand why this is true.

Second-order condition There is also a second-order condition for functions f twice-differentiable on the
interior of their domains:

dom(f) is convex and V?f(z) > 0 for all = € int dom(f) 3)
2 2
gmg () ... F2d—(2)
where A = 0 means the matrix A is positive semidefinite and V2 f(z) = : : is
2 2
6’::1(511 (l‘> gwig (37)

the Hessian at x.

Strict convexity A strictly convex function has tangent planes strictly less than the function (at all points
other than where they are tangent). The equvialent of the conditions (1) (2) (3) are

fOz+ (1 =Ny) <Af(x)+(1—-XN)f(y) forallz #y e domf,Ae(0,1) 4)
dom(f)is convexand f(y) — f(z) > Vf(x)T (y — z) forall z # y € int dom(f) (5)
dom(f)is convexand V?f(z) >~ 0 forall 2 € int dom f (6)

The notation V2 f(z) > 0 means that V2 f(z) is (strictly) positive definite. Note that (6) is a sufficient con-
dition but is not necessary. (Can you think of a counterexample?) The other conditions are both sufficient
and necessary (when applicable).

A strictly convex function has a unique minimum.

Strong convexity An m-strongly convex function is lower-bounded by tangent parabolas with a fixed cur-
vature coefficient m > 0. The conditions become:

Fr+ (1= X)) < Af(@) + (1= N)F) — gmA( =Nz~ [} forallz,y e domfAe[0,1] ()
dom(f)is convexand f(y) — f(z) > Vf(z)T (y — z) + %Hy — 2|3 forallz,y € intdom(f)  (8)
dom(f)is convexand V?2f(x) = mlI forall x € int dom f )

A > B means that A— B > 0. A > ml is equivalent to the smallest eigenvalue of A being at least m (why?).
Each of these conditions is both sufficient and necessary (when applicable).
Strong convexity is useful in proving that some optimization algorithms converge, as we saw in class.
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