MACHINE LEARNING DEPARTMENT

Introduction to Machine Learning

 12. Gaussian Processes
Alex Smola
 Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701
10-701

The Normal Distribution

GD9674175N9

http://www.gaussianprocess.org/gpml/chapters/

The Normal Distribution

Gaussians in Space

Gaussians in Space

samples in R^{2}

Carnegie Mellon University

The Normal Distribution

- Density for scalar variables

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)}
$$

- Density in d dimensions

$$
p(x)=(2 \pi)^{-\frac{d}{2}}|\Sigma|^{-1} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}
$$

- Principal components
- Eigenvalue decomposition $\Sigma=U^{\top} \Lambda U$
- Product representation

$$
p(x)=(2 \pi)^{-\frac{d}{2}} e^{-\frac{1}{2}(U(x-\mu))^{\top} \Lambda^{-1} U(x-\mu)}
$$

The Normal Distribution

principal

- Central limit theorem shows that in the limit all averages behave like Gaussians
- Easy to estimate parameters (MLE)

$$
\mu=\frac{1}{m} \sum_{i=1}^{m} x_{i} \text { and } \Sigma=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}-\mu \mu^{\top}
$$

- Distribution with largest uncertainty (entropy) for a given mean and covariance.
- Works well even if the assumptions are wrong
- Central limit theorem shows that in the limit all averages behave like Gaussians
- Easy to estimate parameters (MLE)

$$
\mu=\frac{1}{m} \sum_{i=1}^{m} x_{i} \text { and } \Sigma=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}-\mu \mu^{\top}
$$

X: data
m: sample size
$\mathrm{mu}=(1 / \mathrm{m}) * \operatorname{sum}(\mathrm{X}, 2)$
sigma $=(1 / m)^{*} X^{*} X^{\prime}-m u * m u{ }^{\prime}$

Sampling from a Gaussian

- Case 1 - We have a normal distribution (randn)
- We want $x \sim \mathcal{N}(\mu, \Sigma)$
- Recipe: $x=\mu+L z$ where $z \sim \mathcal{N}(0,1)$ and $\Sigma=L L^{\top}$
- Proof: $\mathbf{E}\left[(x-\mu)(x-\mu)^{\top}\right]=\mathbf{E}\left[L z z^{\top} L^{\top}\right]$

$$
=L \mathbf{E}\left[z z^{\top}\right] L^{\top}=L L^{\top}=\Sigma
$$

- Case 2 - Box-Müller transform for U[0,1]

$$
\begin{aligned}
& p(x)=\frac{1}{2 \pi} e^{-\frac{1}{2}\|x\|^{2}} \Longrightarrow p(\phi, r)=\frac{1}{2 \pi} e^{-\frac{1}{2} r^{2}} \\
& F(\phi, r)=\frac{\phi}{2 \pi} \cdot\left[1-e^{-\frac{1}{2} r^{2}}\right]
\end{aligned}
$$

Sampling from a Gaussian

$$
\begin{aligned}
& p(x)=\frac{1}{2 \pi} e^{-\frac{1}{2}\|x\|^{2}} \Longrightarrow p(\phi, r)=\frac{1}{2 \pi} e^{-\frac{1}{2} r^{2}} \\
& F(\phi, r)=\frac{\phi}{2 \pi} \cdot\left[1-e^{-\frac{1}{2} r^{2}}\right]
\end{aligned}
$$

Sampling from a Gaussian

- Cumulative distribution function

$$
F(\phi, r)=\frac{\phi}{2 \pi} \cdot\left[1-e^{-\frac{1}{2} r^{2}}\right]
$$

Draw radial and angle component separately
tmp1 = rand()
tmp2 = rand()
$r=s q r t(-2 * \log (t m p 1))$
$x 1=r * \sin (t m p 2 /(2 * p i))$
$x 2=r * \cos (t m p 2 /(2 * p i))$

Sampling from a Gaussian

- Cumulative distribution function

$$
F(\phi, r)=\frac{\phi}{2 \pi} \cdot\left[1-e^{-\frac{1}{2} r^{2}}\right]
$$

Draw radial and angle component separately
tmp1 = rand()
Why can we use tmp1
tmp2 = rand()
$r=s q r t(-2 * \log (t m p 1))$
$x 1=r * \sin (t m p 2 /(2 * p i))$
$x 2=r * \cos (t m p 2 /(2 * p i))$

Example: correlating weight and height

Example: correlating weight and height

$p($ weight \mid height $)=\frac{p(\text { height }, \text { weight })}{p(\text { height })} \propto p($ height, weight $)$

keep linear and quadratic terms of exponent
Carnegie Mellon University

The gory math

Correlated Observations

Assume that the random variables $t \in \mathbb{R}^{n}, t^{\prime} \in \mathbb{R}^{n^{\prime}}$ are jointly normal with mean $\left(\mu, \mu^{\prime}\right)$ and covariance matrix K

$$
p\left(t, t^{\prime}\right) \propto \exp \left(-\frac{1}{2}\left[\begin{array}{l}
t-\mu \\
t^{\prime}-\mu^{\prime}
\end{array}\right]^{\top}\left[\begin{array}{ll}
K_{t t} & K_{t t^{\prime}} \\
K_{t t^{\prime}}^{\top} & K_{t^{\prime} t^{\prime}}
\end{array}\right]^{-1}\left[\begin{array}{l}
t-\mu \\
t^{\prime}-\mu^{\prime}
\end{array}\right]\right) .
$$

Inference

Given t, estimate t^{\prime} via $p\left(t^{\prime} \mid t\right)$. Translation into machine learning language: we learn t^{\prime} from t.

Practical Solution

Since $t^{\prime} \mid t \sim \mathcal{N}(\tilde{\mu}, \tilde{K})$, we only need to collect all terms in $p\left(t, t^{\prime}\right)$ depending on t^{\prime} by matrix inversion, hence

$$
\begin{aligned}
& \tilde{K}=K_{t^{\prime} t^{\prime}}-K_{t t^{\prime}}^{\top} K_{t t}^{-1} K_{t t^{\prime}} \text { and } \tilde{\mu}=\mu^{\prime}+K_{t t^{\prime}}^{\top} \underbrace{\left[K_{t t}^{-1}(t-\mu)\right]}_{\text {independent of } t^{\prime}} \\
& \text { Handbook of Matrices, Lütkepohl } 1997 \text { (big timesaver) }
\end{aligned}
$$

- Normal distribution

$$
p(x)=(2 \pi)^{-\frac{d}{2}}|\Sigma|^{-1} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}
$$

- Sampling from $x \sim \mathcal{N}(\mu, \Sigma)$

Use $x=\mu+L z$ where $z \sim \mathcal{N}(0,1)$ and $\Sigma=L L^{\top}$

- Estimating mean and variance

$$
\mu=\frac{1}{m} \sum_{i=1}^{m} x_{i} \text { and } \Sigma=\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{\top}-\mu \mu^{\top}
$$

- Conditional distribution is Gaussian, too!
$p\left(x_{2} \mid x_{1}\right) \propto \exp \left[-\frac{1}{2}\left[\begin{array}{l}x_{1}-\mu_{1} \\ x_{2}-\mu_{2}\end{array}\right]^{\top}\left[\begin{array}{cc}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22}\end{array}\right]^{-1}\left[\begin{array}{l}x_{1}-\mu_{1} \\ x_{2}-\mu_{2}\end{array}\right]\right]$
magic Etcha Sketch screen

Eaussian Processes

Carnegie Mellon University

Gaussian Process

Key Idea

Instead of a fixed set of random variables t, t^{\prime} we assume a stochastic process $t: X \rightarrow \mathbb{R}$, e.g. $X=\mathbb{R}^{n}$.
Previously we had $\mathcal{X}=\{$ age, height, weight, $\ldots\}$.
Definition of a Gaussian Process
A stochastic process $t: X \rightarrow \mathbb{R}$, where all $\left(t\left(x_{1}\right), \ldots, t\left(x_{m}\right)\right)$ are normally distributed.
Parameters of a GP

$$
\text { Mean } \quad \mu(x):=\mathbf{E}[t(x)]
$$

Covariance Function $\quad k\left(x, x^{\prime}\right):=\operatorname{Cov}\left(t(x), t\left(x^{\prime}\right)\right)$
Simplifying Assumption
We assume knowledge of $k\left(x, x^{\prime}\right)$ and set $\mu=0$.

Gaussian Process

- Sampling from a Gaussian Process
- Points x where we want to sample
- Compute covariance matrix X
- Can only obtain values at those points!
- In general entire function $f(x)$ is NOT available

Gaussian Process

- Sampling from a Gaussian Process
- Points x where we want to sample
- Compute covariance matrix X
- Can only obtain values at those points!
- In general entire function $f(x)$ is NOT available

only looks smooth (evaluated at many points)

Gaussian Process

- Sampling from a Gaussian Process
- Points x where we want to sample
- Compute covariance matrix X
- Can only obtain values at those points!
- In general entire function $f(x)$ is NOT available

$$
\begin{gathered}
p(t \mid X)=(2 \pi)^{-\frac{m}{2}}|K|^{-1} \exp \left(-\frac{1}{2}(t-\mu)^{\top} K^{-1}(t-\mu)\right) \\
\text { where } K_{i j}=k\left(x_{i}, x_{j}\right) \text { and } \mu_{i}=\mu\left(x_{i}\right)
\end{gathered}
$$

Kernels

Covariance Function

- Function of two arguments
- Leads to matrix with nonnegative eigenvalues
- Describes correlation between pairs of observations

Kernel

- Function of two arguments
- Leads to matrix with nonnegative eigenvalues
- Similarity measure between pairs of observations

Lucky Guess

- We suspect that kernels and covariance functions are the same...
- Gaussian Process
- Think distribution over function values (not functions)
- Defined by mean and covariance function

$$
p(t \mid X)=(2 \pi)^{-\frac{m}{2}}|K|^{-1} \exp \left(-\frac{1}{2}(t-\mu)^{\top} K^{-1}(t-\mu)\right)
$$

- Generates vectors of arbitrary dimensionality (via X)
- Covariance function via kernels

magic Etch ASketch scren

Eaussian Process

Regression

Carnegie Mellon University

Gaussian Processes for Inference

Carnegie Mêllon University

Joint Gaussian Model

- Random variables $\left(t, t^{\prime}\right)$ are drawn from GP

$$
p\left(t, t^{\prime}\right) \propto \exp \left(-\frac{1}{2}\left[\begin{array}{l}
t-\mu \\
t^{\prime}-\mu^{\prime}
\end{array}\right]^{\top}\left[\begin{array}{ll}
K_{t t} & K_{t t^{\prime}} \\
K_{t t^{\prime}}^{\top} & K_{t^{\prime} t^{\prime}}
\end{array}\right]^{-1}\left[\begin{array}{l}
t-\mu \\
t^{\prime}-\mu^{\prime}
\end{array}\right]\right)
$$

- Observe subset \dagger
- Predict \dagger^{\prime} using

$$
\tilde{K}=K_{t^{\prime} t^{\prime}}-K_{t t^{\prime}}^{\top} K_{t t}^{-1} K_{t t^{\prime}} \text { and } \tilde{\mu}=\mu^{\prime}+K_{t t^{\prime}}^{\top}\left[K_{t t}^{-1}(t-\mu)\right]
$$

- Linear expansion (precompute things)
- Predictive uncertainty is data independent Good for experimental design
- Predictive uncertainty is data independent

Linear Gaussian Process Regression

Linear kernel: $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle$

- Kernel matrix $X^{\top} X$
- Mean and covariance

$$
\begin{aligned}
\tilde{K} & =X^{\prime \top} X^{\prime}-X^{\prime \top} X\left(X^{\top} X\right)^{-1} X^{\top} X^{\prime}=X^{\prime \top}\left(1-P_{X}\right) X^{\prime} . \\
\tilde{\mu} & =X^{\prime \top}\left[X\left(X^{\top} X\right)^{-1} t\right]
\end{aligned}
$$

- $\tilde{\mu}$ is a linear function of X^{\prime}.

Problem

- The covariance matrix $X^{\top} X$ has at most rank n.
- After n observations ($x \in \mathbb{R}^{n}$) the variance vanishes. This is not realistic.
- "Flat pancake" or "cigar" distribution.

Degenerate Covariance

Carnegie Mellon University

Additive Noise

Indirect Model

Instead of observing $t(x)$ we observe $y=t(x)+\xi$, where ξ is a nuisance term. This yields

$$
p(Y \mid X)=\int \prod_{i=1}^{m} p\left(y_{i} \mid t_{i}\right) p(t \mid X) d t
$$

where we can now find a maximum a posteriori solution for t by maximizing the integrand (we will use this later). Additive Normal Noise

- If $\xi \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then y is the sum of two Gaussian random variables.
- Means and variances add up.

$$
y \sim \mathcal{N}\left(\mu, K+\sigma^{2} \mathbf{1}\right)
$$

Data

Predictive mean $k(x, X)^{\top}\left(K(X, X)+\sigma^{2} 1\right)^{-1} y$

1 versity

Variance

Putting it all together

Putting it all together

Ugly details

Covariance Matrices

- Additive noise

$$
K=K_{\text {kernel }}+\sigma^{2} \mathbf{1}
$$

- Predictive mean and variance

$$
\tilde{K}=K_{t^{\prime} t^{\prime}}-K_{t t^{\prime}}^{\top} K_{t t}^{-1} K_{t t^{\prime}} \text { and } \tilde{\mu}=K_{t t^{\prime}}^{\top} K_{t t}^{-1} t
$$

With Noise

$$
\begin{aligned}
\tilde{K} & =K_{t^{\prime} t^{\prime}}+\sigma^{2} \mathbf{1}-K_{t t^{\prime}}^{\top}\left(K_{t t}+\sigma^{2} \mathbf{1}\right)^{-1} K_{t t^{\prime}} \\
\text { and } \tilde{\mu} & =\mu^{\prime}+K_{t t^{\prime}}^{\top}\left[\left(K_{t t}+\sigma^{2} \mathbf{1}\right)^{-1}(y-\mu)\right]
\end{aligned}
$$

Pseudocode

$$
\begin{aligned}
\tilde{K} & =K_{t^{\prime} t^{\prime}}+\sigma^{2} \mathbf{1}-K_{t t^{\prime}}^{\top}\left(K_{t t}+\sigma^{2} \mathbf{1}\right)^{-1} K_{t t^{\prime}} \\
\text { and } \tilde{\mu} & =\mu^{\prime}+K_{t t^{\prime}}^{\top}\left[\left(K_{t t}+\sigma^{2} \mathbf{1}\right)^{-1}(y-\mu)\right]
\end{aligned}
$$

ktrtr $=k(x t r a i n, x t r a i n)+\operatorname{sigma2} *$ eye (mtr)
ktetr $=k$ (xtest,xtrain)
ktete $=k$ (xtest, xtest)
alpha = ytr/ktrtr \%better if you use cholesky
yte $\quad=$ ktetr * alpha
sigmate $=$ ktete + sigma2 * eye (mte) + ... ktetr * (ktetr/ktrtr)'

The connection between SVM and GP

Gaussian Process on Parameters

$$
t \sim \mathcal{N}(\mu, K) \text { where } K_{i j}=k\left(x_{i}, x_{j}\right)
$$

Linear Model in Feature Space

$$
t(x)=\langle\Phi(x), w\rangle+\mu(x) \text { where } w \sim \mathcal{N}(0, \mathbf{1})
$$

The covariance between $t(x)$ and $t\left(x^{\prime}\right)$ is then given by

$$
\mathbf{E}_{w}\left[\langle\Phi(x), w\rangle\left\langle w, \Phi\left(x^{\prime}\right)\right\rangle\right]=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=k\left(x, x^{\prime}\right)
$$

Linear model in feature space induces a Gaussian Process

- Latent variables † drawn from a Gaussian Process
- Observations y are t corrupted with noise
- Observations y are drawn from Gaussian Process

$$
\mu \rightarrow \mu \text { and } K \rightarrow K+\sigma^{2} \mathbf{1}
$$

- Estimate $y^{\prime} \mid y, x, x^{\prime}$ (matrix inversion)

$$
\tilde{K}=K_{t^{\prime} t^{\prime}}+\sigma^{2} \mathbf{1}-K_{t t^{\prime}}^{\top}\left(K_{t t}+\sigma^{2} \mathbf{1}\right)^{-1} K_{t t^{\prime}}
$$

$$
\text { and } \tilde{\mu}=\mu^{\prime}+K_{t t^{\prime}}^{\top}\left[\left(K_{t t}+\sigma^{2} \mathbf{1}\right)^{-1}(y-\mu)\right]
$$

- SVM kernel is GP kernel

magic Etch A Sketch screen

Gaussian
Process
Classificalion

Carnegie Mellon University

- Regression
- Data y is scalar

- Connection to \dagger is by additive noise

$$
\begin{aligned}
t \sim \mathcal{N}(\mu, K) \text { and } y_{i} & \sim \mathcal{N}\left(t_{i}, \sigma^{2}\right) \\
\text { i.e. } p\left(y_{i} \mid t_{i}\right) & =\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-t_{i}\right)^{2}}
\end{aligned}
$$

- (Binary) Classification
- Data y in $\{-1,1\}$
- Connection to \dagger is by logistic model

$$
t \sim \mathcal{N}(\mu, K) \text { and } p\left(y_{i} \mid t_{i}\right)=\frac{1}{1+e^{-y_{i} t_{i}}}
$$

Logistic function

Gaussian Process Classification

- Regression

$$
t \sim \mathcal{N}(\mu, K) \text { and } y_{i} \sim \mathcal{N}\left(t_{i}, \sigma^{2}\right) \text { hence } y \sim \mathcal{N}\left(\mu, K+\sigma^{2} \mathbf{1}\right)
$$

We can integrate out the latent variable t .

- Classification

Closed form solution is not possible

$$
t \sim \mathcal{N}(\mu, K) \text { and } y_{i} \sim \operatorname{Logistic}\left(t_{i}\right)
$$

(we cannot solve the integral in t).

$$
\begin{aligned}
p(t \mid y, x) & \propto p(t \mid x) \prod_{i=1}^{m} p\left(y_{i} \mid t_{i}\right) \\
& \propto \exp \left(-\frac{1}{2} t^{\top} K^{-1} t\right) \prod_{i=1}^{m} \frac{1}{1+e^{-y_{i} t_{i}}}
\end{aligned}
$$

Gaussian Process Classification

- What we should do: integrate out $\boldsymbol{t}, \mathrm{t}^{\prime}$

$$
p\left(y^{\prime} \mid y, x, x^{\prime}\right)=\int d\left(t, t^{\prime}\right) p\left(y^{\prime} \mid t^{\prime}\right) p(y \mid t) p\left(t, t^{\prime} \mid x, x^{\prime}\right)
$$

But this is very very expensive (e.g. MCMC)

- Maximum a Posteriori approximation
- Find

$$
\hat{t}:=\underset{t}{\operatorname{argmax}} p(y \mid t) p(t \mid x)
$$

- Ignore correlation in test data (horrible)
- Find $\quad \hat{t}^{\prime}\left(x^{\prime}\right):=\operatorname{argmax} p\left(\hat{t}, t^{\prime} \mid x, x^{\prime}\right)$
- Estimate $y^{\prime} \mid y, x, x^{\prime} \sim \operatorname{Logistic}\left(\hat{t}^{\prime}\left(x^{\prime}\right)\right)$

Maximum a Posteriori Approximation

- Step 1 - maximize $p(t \mid y, x)$

$$
\underset{t}{\operatorname{minimize}} \frac{1}{2} t^{\top} K^{-1} t+\sum_{i=1}^{m} \log \left(1+e^{-y_{i} t_{i}}\right)
$$

- Step 2 - find $t^{\prime} \mid t$ for MAP estimate of t

$$
t^{\prime}=K_{t t^{\prime}}^{\top} K_{t t}^{-1} t \quad \text { precompute }
$$

- Step 3 - estimate $p\left(y^{\prime} \mid t^{\prime}\right)$

$$
p\left(y^{\prime} \mid t^{\prime}\right)=\frac{1}{1+e^{-y^{\prime} t^{\prime}}}
$$

Clean Data

Noisy Data

- SVM objective

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} K \alpha+\sum_{i=1}^{m} \max \left(0,1-y_{i}[K \alpha]_{i}\right)
$$

- Logistic regression objective (MAP estimation)

$$
\underset{t}{\operatorname{minimize}} \frac{1}{2} t^{\top} K^{-1} t+\sum_{i=1}^{m} \log \left(1+e^{-y_{i} t_{i}}\right)
$$

- Reparametrize $\alpha=K^{-1} t$

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top} K \alpha+\sum_{i=1}^{m} \log \left(1+\exp y_{i}[K \alpha]_{i}\right)
$$

More loss functions

- Latent variables drawn from Gaussian Process
- Observation drawn from logistic model
- Impossible to integrate out latent variables
- Maximum a posteriori inference (with many hacks to make it scale)
- Optimization problem is similar to SVM (different loss and parametrization $\alpha=K^{-1} t$)
- Advanced topic - adjusting K via prior on k

