

Introduction to Machine Learning 12. Gaussian Processes

Alex Smola Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701 10-701

The Normal Distribution

http://www.gaussianprocess.org/gpml/chapters/ Carnegie Mellon University

The Normal Distribution

Gaussians in Space

Gaussians in Space

samples in R²

The Normal Distribution

• Density for scalar variables

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)}$$

- Density in d dimensions $p(x) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-1} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$
- Principal components
 - Eigenvalue decomposition $\Sigma = U^{\top} \Lambda U$
 - Product representation

$$p(x) = (2\pi)^{-\frac{d}{2}} e^{-\frac{1}{2}(U(x-\mu))^{\top} \Lambda^{-1} U(x-\mu)}$$

The Normal Distribution

Why do we care?

- Central limit theorem shows that in the limit all averages behave like Gaussians
- Easy to estimate parameters (MLE)

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i \text{ and } \Sigma = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\top} - \mu \mu^{\top}$$

- Distribution with largest uncertainty (entropy) for a given mean and covariance.
- Works well even if the assumptions are wrong

Why do we care?

- Central limit theorem shows that in the limit all averages behave like Gaussians
- Easy to estimate parameters (MLE)

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i \text{ and } \Sigma = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\top} - \mu \mu^{\top}$$

- X: data
- m: sample size

mu = (1/m) * sum(X, 2)

sigma = (1/m) * X * X' - mu * mu'

- Case 1 We have a normal distribution (randn)
 - We want $x \sim \mathcal{N}(\mu, \Sigma)$
 - Recipe: $x = \mu + Lz$ where $z \sim \mathcal{N}(0, 1)$ and $\Sigma = LL^{\top}$
 - Proof: $\mathbf{E}\left[(x-\mu)(x-\mu)^{\top}\right] = \mathbf{E}\left[Lzz^{\top}L^{\top}\right]$ = $L\mathbf{E}\left[zz^{\top}\right]L^{\top} = LL^{\top} = \Sigma$
- Case 2 Box-Müller transform for U[0,1]

$$p(x) = \frac{1}{2\pi} e^{-\frac{1}{2} ||x||^2} \Longrightarrow p(\phi, r) = \frac{1}{2\pi} e^{-\frac{1}{2}r^2}$$
$$F(\phi, r) = \frac{\phi}{2\pi} \cdot \left[1 - e^{-\frac{1}{2}r^2}\right]$$

$$p(x) = \frac{1}{2\pi} e^{-\frac{1}{2} ||x||^2} \Longrightarrow p(\phi, r) = \frac{1}{2\pi} e^{-\frac{1}{2}r^2}$$
$$F(\phi, r) = \frac{\phi}{2\pi} \cdot \left[1 - e^{-\frac{1}{2}r^2}\right]$$

Cumulative distribution function

$$F(\phi, r) = \frac{\phi}{2\pi} \cdot \left[1 - e^{-\frac{1}{2}r^2}\right]$$

Draw radial and angle component separately

Cumulative distribution function

$$F(\phi, r) = \frac{\phi}{2\pi} \cdot \left[1 - e^{-\frac{1}{2}r^2}\right]$$

Draw radial and angle component separately

tmp1 = rand()
tmp2 = rand()
r = sqrt(-2*log(tmp1))
x1 = r*sin(tmp2/(2*pi))
x2 = r*cos(tmp2/(2*pi))

Example: correlating weight and height

Example: correlating weight and height

The gory math

Correlated Observations

Assume that the random variables $t \in \mathbb{R}^n, t' \in \mathbb{R}^{n'}$ are jointly normal with mean (μ, μ') and covariance matrix K

$$p(t,t') \propto \exp\left(-\frac{1}{2} \begin{bmatrix} t-\mu\\t'-\mu' \end{bmatrix}^{\top} \begin{bmatrix} K_{tt} & K_{tt'}\\K_{tt'}^{\top} & K_{t't'} \end{bmatrix}^{-1} \begin{bmatrix} t-\mu\\t'-\mu' \end{bmatrix}\right).$$

Inference

Given t, estimate t' via p(t'|t). Translation into machine learning language: we learn t' from t.

Practical Solution

Since $t'|t \sim \mathcal{N}(\tilde{\mu}, \tilde{K})$, we only need to collect all terms in p(t, t') depending on t' by matrix inversion, hence

$$\tilde{K} = K_{t't'} - K_{tt'}^{\top} K_{tt}^{-1} K_{tt'}$$
 and $\tilde{\mu} = \mu' + K_{tt'}^{\top} [K_{tt}^{-1} (t - \mu)]$

Handbook of Matrices, Lütkepohl 1997 (big timesaver)

independent of *t'* Carnegie Mellon University

Mini Summary

Normal distribution

$$p(x) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-1} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$$

- Sampling from $x \sim \mathcal{N}(\mu, \Sigma)$ Use $x = \mu + Lz$ where $z \sim \mathcal{N}(0, 1)$ and $\Sigma = LL^{\top}$
- Estimating mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i \text{ and } \Sigma = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\top} - \mu \mu^{\top}$$

• Conditional distribution is Gaussian, tool $p(x_{2}|x_{1}) \propto \exp \left[-\frac{1}{2} \begin{bmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{bmatrix}^{\top} \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix}^{-1} \begin{bmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{bmatrix} \right]$ Carnegie Mellon University

MAGIC Etch A Sketch SCREEN

Graussian Processes

latenzientei Guid 1 Let 21 " Cheshind of Tak."

emase diroale vésilró ni pelo ggalo gi meendo dida erad mpine edil

Key Idea

Instead of a fixed set of random variables t, t' we assume a stochastic process $t : \mathcal{X} \to \mathbb{R}$, e.g. $\mathcal{X} = \mathbb{R}^n$. Previously we had $\mathcal{X} = \{age, height, weight, \ldots\}$.

Definition of a Gaussian Process

A stochastic process $t : \mathfrak{X} \to \mathbb{R}$, where all $(t(x_1), \ldots, t(x_m))$ are normally distributed.

Parameters of a GP

Mean

Covariance Function

$$\mu(x) := \mathbf{E}[t(x)]$$
$$k(x, x') := \operatorname{Cov}(t(x), t(x'))$$

Simplifying Assumption

We assume knowledge of k(x, x') and set $\mu = 0$. Carnegie Mellon University

- Sampling from a Gaussian Process
 - Points x where we want to sample
 - Compute covariance matrix X
 - Can only obtain values at those points!
 - In general entire function f(x) is NOT available

- Sampling from a Gaussian Process
 - Points x where we want to sample
 - Compute covariance matrix X
 - Can only obtain values at those points!
 - In general entire function f(x) is NOT available

only looks smooth (evaluated at many points)

- Sampling from a Gaussian Process
 - Points x where we want to sample
 - Compute covariance matrix X
 - Can only obtain values at those points!
 - In general entire function f(x) is NOT available

$$p(t|X) = (2\pi)^{-\frac{m}{2}} |K|^{-1} \exp\left(-\frac{1}{2}(t-\mu)^{\top} K^{-1}(t-\mu)\right)$$

where
$$K_{ij} = k(x_i, x_j)$$
 and $\mu_i = \mu(x_i)$

Kernels ...

Covariance Function

- Function of two arguments
- Leads to matrix with nonnegative eigenvalues
- Describes correlation between pairs of observations

Kernel

- Function of two arguments
- Leads to matrix with nonnegative eigenvalues
- Similarity measure between pairs of observations

Lucky Guess

We suspect that kernels and covariance functions are the same ...

Mini Summary

- Gaussian Process
 - Think distribution over function values (not functions)
 - Defined by mean and covariance function

$$p(t|X) = (2\pi)^{-\frac{m}{2}} |K|^{-1} \exp\left(-\frac{1}{2}(t-\mu)^{\top} K^{-1}(t-\mu)\right)$$

- Generates vectors of arbitrary dimensionality (via X)
- Covariance function via kernels

MAGIC Etch A Sketch SCREEN

Gaussian Process

Regression

an MENDIAR GEARANGIGTOR

Gaussian Processes for Inference

Joint Gaussian Model

Random variables (t,t') are drawn from GP

$$p(t,t') \propto \exp\left(-\frac{1}{2} \begin{bmatrix} t-\mu\\t'-\mu' \end{bmatrix}^{\top} \begin{bmatrix} K_{tt} & K_{tt'}\\K_{tt'}^{\top} & K_{t't'} \end{bmatrix}^{-1} \begin{bmatrix} t-\mu\\t'-\mu' \end{bmatrix}\right)$$

- Observe subset t
- Predict t' using

 $\tilde{K} = K_{t't'} - K_{tt'}^{\top} K_{tt}^{-1} K_{tt'}$ and $\tilde{\mu} = \mu' + K_{tt'}^{\top} \left[K_{tt}^{-1} (t - \mu) \right]$

- Linear expansion (precompute things)
- Predictive uncertainty is data independent Good for experimental design
- Predictive uncertainty is data independent

Linear Gaussian Process Regression

Linear kernel: $k(x, x') = \langle x, x' \rangle$

- **Solution** Kernel matrix $X^{\top}X$
- Mean and covariance

$$\tilde{K} = X'^{\top}X' - X'^{\top}X(X^{\top}X)^{-1}X^{\top}X' = X'^{\top}(\mathbf{1} - P_X)X'.$$
$$\tilde{\mu} = X'^{\top}[X(X^{\top}X)^{-1}t]$$

$\ \, {\widetilde \mu} \ \, {\rm is \ \, a \ \, linear \ \, function \ \, of \ \, X'}. \ \ \,$

Problem

- **●** The covariance matrix $X^{\top}X$ has at most rank n.
- ▲ After *n* observations ($x \in \mathbb{R}^n$) the variance vanishes. This is not realistic.
- "Flat pancake" or "cigar" distribution.

Additive Noise

Indirect Model

Instead of observing t(x) we observe $y = t(x) + \xi$, where ξ is a nuisance term. This yields

$$p(Y|X) = \int \prod_{i=1}^{m} p(y_i|t_i) p(t|X) dt$$

where we can now find a maximum a posteriori solution for t by maximizing the integrand (we will use this later). Additive Normal Noise

- If $\xi \sim \mathcal{N}(0, \sigma^2)$ then y is the sum of two Gaussian random variables.
- Means and variances add up.

$$y \sim \mathcal{N}(\mu, K + \sigma^2 \mathbf{1}).$$

Data

van mon van versity

Predictive mean $k(x, X)^{\top}(K(X, X) + \sigma^2 \mathbf{1})^{-1}y$

Variance

Putting it all together

Putting it all together

Ugly details

Covariance Matrices

Additive noise

$$K = K_{\text{kernel}} + \sigma^2 \mathbf{1}$$

Predictive mean and variance $\tilde{K} = K_{t't'} - K_{tt'}^{\top} K_{tt}^{-1} K_{tt'} \text{ and } \tilde{\mu} = K_{tt'}^{\top} K_{tt}^{-1} t$

With Noise

$$\tilde{K} = K_{t't'} + \sigma^2 \mathbf{1} - K_{tt'}^{\top} \left(K_{tt} + \sigma^2 \mathbf{1} \right)^{-1} K_{tt'}$$

and $\tilde{\mu} = \mu' + K_{tt'}^{\top} \left[\left(K_{tt} + \sigma^2 \mathbf{1} \right)^{-1} (y - \mu) \right]$

Pseudocode

$$\tilde{K} = K_{t't'} + \sigma^2 \mathbf{1} - K_{tt'}^{\top} \left(K_{tt} + \sigma^2 \mathbf{1} \right)^{-1} K_{tt'}$$

and $\tilde{\mu} = \mu' + K_{tt'}^{\top} \left[\left(K_{tt} + \sigma^2 \mathbf{1} \right)^{-1} \left(y - \mu \right) \right]$

- ktrtr = k(xtrain,xtrain) + sigma2 * eye(mtr)
 ktetr = k(xtest,xtrain)
- ktete = k(xtest, xtest)

alpha = ytr/ktrtr %better if you use cholesky
yte = ktetr * alpha
sigmate = ktete + sigma2 * eye(mte) + ...
ktetr * (ktetr/ktrtr)'

The connection between SVM and GP

Gaussian Process on Parameters

$$t \sim \mathcal{N}(\mu, K)$$
 where $K_{ij} = k(x_i, x_j)$

Linear Model in Feature Space

$$t(x) = \langle \Phi(x), w \rangle + \mu(x) \text{ where } w \sim \mathcal{N}(0, \mathbf{1})$$

The covariance between t(x) and t(x') is then given by

 $\mathbf{E}_w\left[\langle \Phi(x), w \rangle \langle w, \Phi(x') \rangle\right] = \langle \Phi(x), \Phi(x') \rangle = k(x, x')$

Linear model in feature space induces a Gaussian Process

Mini Summary

- Latent variables t drawn from a Gaussian Process
- Observations y are t corrupted with noise
- Observations y are drawn from Gaussian Process

 $\mu \to \mu$ and $K \to K + \sigma^2 \mathbf{1}$

• Estimate y'|y,x,x' (matrix inversion)

$$\tilde{K} = K_{t't'} + \sigma^2 \mathbf{1} - K_{tt'}^{\top} \left(K_{tt} + \sigma^2 \mathbf{1} \right)^{-1} K_{tt'}$$

and $\tilde{\mu} = \mu' + K_{tt'}^{\top} \left[\left(K_{tt} + \sigma^2 \mathbf{1} \right)^{-1} \left(y - \mu \right) \right]$

• SVM kernel is GP kernel

MAGIC Etch A Sketch SCREEN

Gaussian Process Classification

and fultiful Alter "Germand of Taxe"

imasi dirdang yasurd ul'rin qqala qi hismdə qiyan Haad hruw Heiy

Gaussian Process Classification

- Regression
 - Data y is scalar
 - Connection to t is by additive noise $t \sim \mathcal{N}(\mu, K)$ and $y_i \sim \mathcal{N}(t_i, \sigma^2)$

i.e.
$$p(y_i|t_i) = (2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2}(y_i-t_i)^2}$$

- (Binary) Classification
 - Data y in {-1, 1}
 - Connection to t is by logistic model

$$t \sim \mathcal{N}(\mu, K)$$
 and $p(y_i|t_i) = \frac{1}{1 + e^{-y_i t_i}}$

Logistic function

Gaussian Process Classification

• Regression

 $t \sim \mathcal{N}(\mu, K)$ and $y_i \sim \mathcal{N}(t_i, \sigma^2)$ hence $y \sim \mathcal{N}(\mu, K + \sigma^2 \mathbf{1})$ We can integrate out the latent variable t.

Classification
 Closed form solution is not possible
 t ~ N(μ, K) and y_i ~ Logistic(t_i)
 (we cannot solve the integral in t).

Gaussian Process Classification

• What we should do: integrate out t,t'

 $p(y'|y, x, x') = \int d(t, t') p(y'|t') p(y|t) p(t, t'|x, x')$

But this is very very expensive (e.g. MCMC)

- Maximum a Posteriori approximation
 - Find $\hat{t} := \operatorname*{argmax}_{t} p(y|t) p(t|x)$
 - Ignore correlation in test data (horrible)
 - Find $\hat{t'}(x') := \operatorname*{argmax}_{t'} p(\hat{t}, t'|x, x')$
 - Estimate $y'|y, x, x' \sim \text{Logistic}(\hat{t'}(x'))$

Maximum a Posteriori Approximation

Step 1 - maximize p(t|y,x)

$$\underset{t}{\text{minimize}} \frac{1}{2} t^{\top} K^{-1} t + \sum_{i=1}^{m} \log \left(1 + e^{-y_i t_i} \right)$$

- Step 2 find t' | t for MAP estimate of t $t' = K_{tt'}^{\top} \frac{K_{tt}^{-1} t}{r}$ precompute
- Step 3 estimate p(y'|t')

$$p(y'|t') = \frac{1}{1 + e^{-y't'}}$$

Clean Data

Noisy Data

Connection to SVMs revisited

SVM objective

$$\underset{\alpha}{\text{minimize}} \frac{1}{2} \alpha^{\top} K \alpha + \sum_{i=1}^{m} \max\left(0, 1 - y_i [K \alpha]_i\right)$$

Logistic regression objective (MAP estimation)

$$\underset{t}{\text{minimize}} \frac{1}{2} t^{\top} K^{-1} t + \sum_{i=1}^{m} \log \left(1 + e^{-y_i t_i} \right)$$

• Reparametrize $\alpha = K^{-1}t$

$$\underset{\alpha}{\text{minimize}} \frac{1}{2} \alpha^{\top} K \alpha + \sum_{i=1}^{m} \log\left(1 + \exp y_i [K \alpha]_i\right)$$

More loss functions

Mini Summary

- Latent variables drawn from Gaussian Process
- Observation drawn from logistic model
 - Impossible to integrate out latent variables
 - Maximum a posteriori inference (with many hacks to make it scale)
- Optimization problem is similar to SVM (different loss and parametrization $\alpha = K^{-1}t$)
- Advanced topic adjusting K via prior on k