Some Tricks

For efficient implementation

Logistic Regression

* Another popular classification model

e Usual setting

e Observe data 1, ..., Z, € R?
e with labels y; € {—1,+1}

* Assume the label probability follows:

p(y = 1|z) = g((w, x))
1
" 1+ exp(—(w, z))

09

0.8

0.7

061

= 0.5

04}

031

0.2

01}F

Analysing further

* Probability for other class

e Thus, overall we have:

p(y

Training LR
» Maximum Likelihood Estimation maximize > log p(yili, w)
» Equivalently minimize > log[l + exp(—y;(w, x;))]

* Add L, regularizer minitumize Zlog[l + exp(—yi(w, ;)] + A|w]?

* Let’s solve this optimization problem in an efficient manner!

Logistic Regression vs SVM

e Recall SVM basically solves

minimize Z max|0, 1 — y;(w, x;)] +)\H’wHQ

* LR basically solves

minivmize Z log[l + exp(—y@-(w, xz))} =+)\HwH2

* That is just replace max with softmax!

Gradient Descent to solve LR

* The objective function is:

n I d | d
J(w):Zlog 1 4+ exp —yizwjﬂfz‘j +)\ng2'
* How to evaluate this?
1=0;
fori=1:n
inner_product = 0;
for j=1:d
inner_product = inner_product + w(j)*x(i,j);
end
J=J+log(1 +exp(-y(i)*inner_product));
end
for j=1:d

J=J+ lambda*w(j)*2;
end

Computing Objective Function

* The objective function is:

n i d | d
J(w):Zlog 1 + exp —inwja:@—j +)\ij2~
i=1 j=1 j=1
* How to evaluate this?

1=0;

fori=1:n
inner_product = 0;
for j=1:d

I inner_product = inner_product + w(j)*X(i,j);
Never!
J=J+log(1+exp(-y(i)*inner_product));
end
for j=1:d
J=J+ lambda*w(j)*2;
end

Computing Objective Function

* The objective function is:

no [d] d
J(w) = Z log |1+ exp (yz Z’wgﬂ?z‘j) T)‘Z"U?
1=1

e How to evaluate this?

Not even this!

j=1 j=1

1=0;
fori=1:n
J=J+log(1+ exp(-y(i)*X(i,:)*w));
end
J=J+sum(w.n2);

Computing Objective Function

* The objective function is:

n d
J(w) = Z log |1+ exp | —y; Z W, T4
i=1

j=1

e How to evaluate this?

d
+)\Zw?
j=1

J=sum(log(1+ exp(-(X*w).*y)))+lambda*sum(w.n2);

* Short code!

* Matrix-vector products and summing vectors are highly optimized

Matrix Multiplication

FEER0

P N eve r W rite Ve Cto r O r m at riX # | fAmanzilz\documentsivisual studio 2013\Projects\MKL\Debug\MKL.exe

1 ' Initializing data for matrix multiplication C=AxB for matrix
operations by yourself! R(2005¢258) "ana Ratrix. B(500x1000)
. . Allocating memory for matrices aligned on B4-byte boundary for better
¢ A|WayS USE I|brar|es performance
° loox faSterI Intializing matrix data
Measuring performance of matrix product using triple nested loop
¢ MKL OI" BLAS maybe Matrix multiplication using triple nested loop completed ==
. at 4202.98626 milliseconds ==
Intlmldatlng to use dlreCtly Measuring performance of matrix product using Intel(R) MKL dgemm function
via CBLAS interface
¢ GOOd NEWSZ Matrix multiplication using Intel(R) MKL dgemm completed ==
at 18. 77745 milliseconds ==
°
Matlab already does it for you | [Suesmm.
b Elgen as Wrapper Example completed.

* Almost matlab like APl in C++ | dSSciiECiRTEis TR

Exercise: Computing Gradient

* For the gradient descent approach, next thing needed is the gradient!

&](UJ) _ i YiTik

B p + 2 \wg
Wk i=1 1 + exp (?Jz D =1 ”wjﬂiz'j)

Exercise: Computing Gradient

* For the gradient descent approach, next thing needed is the gradient!

+ 2 \wg

&](UJ) _ i YiTik

owp i—1 1+ exp (yz Z?:l fUJjLE'Z'j)

* Get the entire gradient vector at one go!
* One way using repmat

b =(1+exp((X*w).*y))).*y
b = repmat(b,1,5);
g = sum(X./b)" + 2*lambda*w;

Exercise: Computing Gradient

* For the gradient descent approach, next thing needed is the gradient!

+ 2 \wg

&](UJ) _ i YiTik

owp i—1 1+ exp (yz Z?:l fUJjLE'Z'j)

* Get the entire gradient vector at one go!
* More memory efficient

b=(1+exp((X*w).*y))).*y
g = sum(bsxfun(@rdivide, X,b));
g = g + 2*lambda*w;

Computing Gram Matrices

K;j = exp(—|z; — zj||%)

nsg=sum(X.*2,2);

K=bsxfun(@minus,nsq,(2*X)*X.");
K=bsxfun(@plus,nsq.’,K);
K=exp(-K);

Algebraic Tricks

* Hopefully if you will solve HW5 bonus and get a multi-variate student
t-distribution for the posterior predictive of Normal Inverse Wishart:

C[(v+p)/2
[(v/2)vp2qpi2 |E|UE 14 L(x—)78 (x - ”)]ww /2

PDF of a general t,,(x; u, X) =

* So you need the determinant and inverse of X — expensive 0(d?>)

* Moreover, posterior predictive has to be computed many times for
different X

Cholesky Decomposition

* The update in posterior predictive for X would be

- "ffn, _|_ 1 ~ ~
N =y (& —) (& — pin)”
* So instead of computing this update:
* Suppose we have cholesky decomposition of X,

» Then we calculate only the rank-one update to obtain &

Cholesky Updates

e Suppose A is a positive definite matrix with L as its cholesky
decomposition.

e Now if we obtain A’ from A by an update of the form
A=A+ xx"

e then the cholesky decomposition L’ of A" can be obtained by
an update operation on L. (Rank 1 update)

e Similarly if we have A = A’ - xx', then we can perform a
Rankl downdate to get L from L’

Cholesky Update

function [L] = cholupdate(L,Xx)
p = length(x);
x= 'o
for

=1:p
sgrt(L(k,k)"2 + x(k)"2);
r / L(k, k);
4 x(k) / L(k, k);
L(k, k) = r;
L(k,k+1:p) = (L(k,k+1l:p) + s*x(k+1:p)) / c;
X(k+1l:p) = c*x(k+l:p) - s*L(k, k+l:p);
end

0O XX

R0

end

e This algorithm is O(D?)!

Nice Properties

e |A| can be computed from L by

D
=1

e Now lets try to compute bT A=1b

b"ATb = bT(LL")7'b
bT(L=H)TL71p
= (L7')T(L71p)

e Therefore compute (L~1b) and multiply its transpose with
itself

Triangular Solver

e (L71b) is the solution of
[x = b

e Remember L is a lower triangular matrix, therefore the above
equation can be solved very efficiently using forward
substitution!

|
o
S

zl,ll‘l
z2,1'I1 + 1212172 = b

Z.111.1135'1 + Im,QI2 + -+ zlmmrl.;rm — bm

Miscellaneous Tricks

* Finding the min/max of a matrix of N-d array

[MinValue, MinIndex] = min(A(:)); %find minimum element in A
MinSub = ind2sub(size(A), Minindex); %convert MinIndex to subscripts

* Try to avoid inverse of a matrix!
* Typically you only need x = A\b
* This invokes appropriate linear solver
* Much more efficient and numerically stable

