
Some Tricks
For efficient implementation



Logistic Regression

• Another popular classification model

• Usual setting
• Observe data                                

• with labels     

• Assume the label probability follows:



Analysing further

• Probability for other class

• Thus, overall we have:



Training LR

• Maximum Likelihood Estimation

• Equivalently

• Add 𝐿2 regularizer

• Let’s solve this optimization problem in an efficient manner!



Logistic Regression vs SVM

• Recall SVM basically solves

• LR basically solves

• That is just replace max with softmax!



Gradient Descent to solve LR
• The objective function is:

• How to evaluate this?
J=0;
for i=1:n

inner_product = 0;
for j=1:d

inner_product = inner_product + w(j)*x(i,j);
end
J = J + log( 1 + exp( - y(i)*inner_product ) );

end
for j=1:d

J = J + lambda*w(j)^2;
end



Computing Objective Function
• The objective function is:

• How to evaluate this?
J=0;
for i=1:n

inner_product = 0;
for j=1:d

inner_product = inner_product + w(j)*X(i,j);
end
J = J + log( 1 + exp( - y(i)*inner_product ) );

end
for j=1:d

J = J + lambda*w(j)^2;
end

Never!



Computing Objective Function
• The objective function is:

• How to evaluate this?

J = 0;
for i=1:n

J = J + log( 1 + exp( - y(i)*X(i,:)*w ) );
end
J = J + sum(w.^2);

Not even this!



Computing Objective Function
• The objective function is:

• How to evaluate this?

• Short code!

• Matrix-vector products and summing vectors are highly optimized

J = sum( log( 1 + exp( - (X*w).*y ) ) ) + lambda*sum(w.^2);



Matrix Multiplication

• Never write vector or matrix 
operations by yourself!

• Always use libraries
• 100x faster!

• MKL or BLAS maybe 
intimidating to use directly

• Good News:
• Matlab already does it for you

• Eigen as wrapper
• Almost matlab like API in C++



Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!



Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

• Get the entire gradient vector at one go!

• One way using repmat

b = ( 1 + exp( (X*w).*y ) ) ) .* y
b = repmat(b,1,5);

g = sum(X./b)’ + 2*lambda*w;



Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

• Get the entire gradient vector at one go!

• More memory efficient

b = ( 1 + exp( (X*w).*y ) ) ) .* y
g = sum(bsxfun(@rdivide, X,b));

g = g’ + 2*lambda*w;



Computing Gram Matrices

nsq=sum(X.^2,2);

K=bsxfun(@minus,nsq,(2*X)*X.'); 
K=bsxfun(@plus,nsq.',K); 
K=exp(-K); 



Algebraic Tricks

• Hopefully if you will solve HW5 bonus and get a multi-variate student 
t-distribution for the posterior predictive of Normal Inverse Wishart:

• So you need the determinant and inverse of Σ – expensive 𝑂 𝑑3

• Moreover, posterior predictive has to be computed many times for 
different  x

PDF of a general 𝑡𝜈 𝐱; 𝝁, 𝚺 =



Cholesky Decomposition

• The update in posterior predictive for Σ would be

• So instead of computing this update:
• Suppose we have cholesky decomposition of Σ𝑛

• Then we calculate only the rank-one update to obtain  Σ



Cholesky Updates



Cholesky Update



Nice Properties



Triangular Solver



Miscellaneous Tricks

• Finding the min/max of a matrix of N-d array

• Try to avoid inverse of a matrix!
• Typically you only need x = 𝐴\b

• This invokes appropriate linear solver

• Much more efficient and numerically stable

[MinValue, MinIndex] = min( A(:) ); %find minimum element in A
MinSub = ind2sub(size(A), MinIndex);    %convert MinIndex to subscripts


