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Topics we covered

• Basics
• Encode independence

• Bayes ball, markov
blanket

• Inference
• Exact

• Expectation Maximization

• Gibbs sampling

• Dynamical Systems
• HMMs, SSMs

Machine Learning

Neural NetworksGraphical Models
• Perceptrons

• Back prop

Optimization!

Non-parametrics
• Kernels

• Gaussian process



Visualization always helps!



Bayesian Network

Copied from:
http://cs.nyu.edu/~dsont
ag/courses/pgm13/slides/
lecture1.pdf



More properties
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http://courses.cs.washing
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15wi/slides/bnets.pdf
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Bayes Ball

Copied from:
http://cs.nyu.edu/~dsont
ag/courses/pgm13/slides/
lecture1.pdf



Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)



Such exact inference is 
hopeless in general.

We have to approximate.



Gaussian Mixture Model



Gaussian Mixture Model



Inference on GMM



Inference on GMM



Expectation-Maximization (EM)





E-step



M-step



Summary



















General EM - Frequentist



General EM - Bayesian

Prior: 



Goal: 



Goal: 



• E-Step: Maximize over q keeping    fixed

• M-Step: Maximize over    keeping q fixed

MLE or MAP on weighted data!
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Chains
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Transition Matrices

Unraveling the chain



Chains

x0 x1 x2 x3

• Transition matrices

x0  = [0.4; 0.6];

Pi1 = [0.2 0.1; 0.8 0.9];

Pi2 = [0.8 0.5; 0.2 0.5];

Pi3 = [0 1; 1 0];

x3  = Pi3 * Pi2 * Pi1 * x0 = [0.45800; 0.54200]
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Markov Chains

• First order chain

• Second order 

x0 x1 x2 x3

x0 x1 x2 x3



Chains

x

x0 x1 x2 x3



Chains

x

x0 x1 x2 x3

not needed for directed graphs that 
are already normalized 
... but good to know ...



Chains

x

x0 x1 x2 x3



Chains

x0 x1 x2 x3

• Forward recursion

• Backward recursion

• Marginalization & conditioning



Chains

• Send forward messages starting from left node

• Send backward messages starting from right node

x0 x1 x2 x3 x4 x5



Example - inferring lunch
• Initial probability

p(x0=t)=p(x0=b) = 0.5

• Stationary transition matrix 

• On fifth day observed at Tazza 
d’oro p(x5=t)=1

• Distribution on day 3
• Left messages to 3
• Right messages to 3

• Renormalize
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Example - inferring lunch
> Pi = [0.9, 0.2; 0.1 0.8]

Pi =

0.90000   0.20000

0.10000   0.80000

> l1 = [0.5; 0.5];

> l3 = Pi * Pi * l1

l3 =

0.58500

0.41500

> r5 = [1; 0];

> r3 = Pi' * Pi' * r5

r3 =

0.83000

0.34000

> (l3 .* r3) / sum(l3 .* r3)

ans =

0.77483

0.22517

0.9 0.2

0.1 0.8

current



Generalizing



State Space Model



Markov Chains



Definitions



Limit behaviour





Is maximization (always) good?



Sampling

• Key idea
• Want accurate distribution of the posterior
• Sample from posterior distribution rather than 

maximizing it
• Problem - direct sampling is usually intractable
• Solutions
• Markov Chain Monte Carlo (complicated)
• Gibbs Sampling (somewhat simpler)



Gibbs sampling

• Gibbs sampling:
• In most cases direct sampling not possible

• Draw one set of variables at a time

0.45 0.05

0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)
(b,g) - draw p(b,.)
(b,b) ...



Gibbs Sampling



Gibbs Sampling



Gibbs sampling for clustering



Gibbs sampling for clustering

random
initialization



Gibbs sampling for clustering

sample cluster 
labels



Gibbs sampling for clustering

resample
cluster model



Gibbs sampling for clustering

resample
cluster labels



Gibbs sampling for clustering

resample
cluster model



Gibbs sampling for clustering

resample
cluster labels



Gibbs sampling for clustering

resample
cluster model e.g. Mahout Dirichlet Process Clustering



Inference Algorithm ≠ Model

Corollary: EM ≠ Clustering
… but some algorithms and models are good match …



Reminder on Kernels

• Remember Kernels are nothing but implicit 
feature maps

• Gram Matrix
•

• of a set of vectors  x1 … xn in the inner product space 
defined by the kernel K 

• Gram Matrix is always positive definite

65



Gaussian Process



Additive Noise



Posterior is also Gaussian



Optimization

Copied from: Xuezhi Wang 



Convex Sets

Copied from: Xuezhi Wang 



Gradient Descent

Copied from: Xuezhi Wang 



Newton’s Method

Copied from: Prof Barnabas 



Newton’s Method

Copied from: Prof Barnabas 



Duality



Back to Optimization



Gradient Descent



Stochastic Gradient Descent



SGD and Perceptron


