Final Review

Topics we covered

Machine Learning

%\

Graphical Models

* Basics
* Encode independence
* Bayes ball, markov
blanket
* Inference
* Exact
Expectation Maximization
Gibbs sampling

* Dynamical Systems
HMMs, SSMs

Non-parametrics Neural Networks
* Kernels * Perceptrons
* (Gaussian process * Back prop

Optimization!

Visualization always helps!

Algebra is boring, so let’s draw this
@ Let’s represent variables as circles
@ Let's draw an arrow from jto i if j € pa;
@ The resulting drawing will be a Directed Graph
@ Moreover it will be Acyclic (no directed cycles)

Llatent

variable /

latent
parameter

Observed

variable

Constant /
hyper const
parameter

Bayesian Network

@ A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
© One node i € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)).
specifying the variable's probability conditioned on its parents’ values

@ Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1,...xp) = H p(xi | xPa(f))

ieVv

@ Powerful framework for designing algorithms to perform probability
computations

Copied from:
http://cs.nyu.edu/~dsont
ag/courses/pgm13/slides/
lecturel.pdf

More properties

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Copied from:
http://courses.cs.washing
ton.edu/courses/cse515/
15wi/slides/bnets.pdf

More Properties

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

Copied from:
http://courses.cs.washing
ton.edu/courses/cse515/
15wi/slides/bnets.pdf

Bayes Ball

@ Algorithm to calculate whether X L Z | Y by looking at graph

separation

@ Look to see if there is active path between X and Z when variables

Y are observed:

(a)

)

(b)

Copied from:
http://cs.nyu.edu/~dsont
ag/courses/pgm13/slides/
lecturel.pdf

Bayes Ball

@ Algorithm to calculate whether X | Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Z when variables
Y are observed:

X Z X V4
_A, / /
%‘\./ %Q !
Y Y
(a) (b) Copied from:
http://cs.nyu.edu/~dsont

ag/courses/pgm13/slides/
lecturel.pdf

Bayes Ball

@ Algorithm to calculate whether X 1. Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Z when variables
Y are observed:

X Y VA X Y Z
(a) (b)

Copied from:
http://cs.nyu.edu/~dsont
ag/courses/pgm13/slides/
lecturel.pdf

A More Complex Example

° o Easy:

« -(ALB|D)

Harder:
) . lric|D)

-~ « (FLG|H)

Flow of influence, again?

Copied from:
https://www.ark.cs.cmu.e
du/PGM/index.php/Curre
nt_events_(2010)

Such exact inference is
hopeless in general.

We have to approximate.

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)
e There are K components
e Component /has an associated mean vector ; < A
o

Component / generates data from NV (z;, ;)

OH-@H

for all j

for all 4

Each data point is generated using this process:
1) Choose component ¢ with probability m; = P(y = i)
2) Datapoint x ~ N(u;, 2;)

28

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)
Hidden variable

p(zly = i) = N(u;, ;) 1

K
p(z) = _Z p(zly = i)P(y = 1)

b= 1

Observed Mixture Mixture
data component proportion

Inference on GMM

What if we don't know 1, ., 0k, 02,71, .-, T 7

= Maximum Likelihood Estimate (MLE)

9:[Mla---aUJKaO'Q?Fl?""WK] H
. H; |
arg max 1:[P(x;|0) -~
j=1
n K ’ L
=argmax [> P(y; =i,z4|0) |
0 iZ1i=1
n K
=argmax [[> P(y; = il0)p(xjly; = il0)
j—lfzj:l

1
arg max 0 Zm\/—exp(ool = mill®)
7TO'

j=1li=1

31

Inference on GMM

What if we don't know ¢ = [y e oo s Ry]y e ey 2R Ty e ooy TR T

How do we find 0 = [u1,..., 0,21, 2k, T1,....TE] Which
gives max. marginal likelihood?

* Set 3% log Prob(...) = 0, and solve for u;.Non-linear, non-analytically solvable
* Use gradient descent. Doable, but often slow
* Use EM. 36

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden class labels =
clustering) first.

e EM is an optimization strategy for objective functions that can be interpreted
as likelihoods in the presence of missing data.

e EM is much simpler than gradient methods:
No need to choose step size.

e EM is an iterative algorithm with two linked steps:
o E-step: fill-in hidden values using inference
o0 M-step: apply standard MLE/MAP method to completed data

o We will prove that this procedure monotonically improves the likelihood (or

leaves it unchanged). EM always converges to a local optimum of the
likelihood.

We can write

p(x1,- - xnlp1, - pr) =] p(zjlpa,-- -, pr) Independent data
j=1
n K

IT > p(zj,y; =ilpa,...,nx) Marginalize over class
y=1:=1

X

n

n K

yy=1:=1
K

ﬁ > exp(—5 5

ij=1i=1

1

a2

2
lz; — willF)m; = learn uy, w,, . Hg

E-step

We want to learn: 0 = [uq, ..., uxl

Our estimator at the end of iteration t-1: ¢~ 1 = [u{71,... ub- 1]
At iteration t, construct function Q:
n K
Qe =Y Y P(y; =ilz;, 0 1) log P(zj,y; = i|6")
j=1i=1

E step
1 t—1 —1
P(yj_?/‘$339t)_P(yj_7f|$ja 7"':IJ’K)

-1
o P(zjly; = i, 07t pbe D P(y; = 4)
< exp(——5llzj — %)
exp(— —gnwj ut 2

~ 2K exp(—siglla; — ul P

Equivalent to assigning clusters to each data point in K-means in a soft way

O
=
)
~
I
(]
(]
3
&
I

iz, 0 1) log P(xj,y; = i|6")

j=1li=1
n K
=Y % P(y; = ilzj, 0" log P(z;|y; = i,0") + log P(y; = i|6")]
j=1i=1 N J \ ~
. Uy
x exp(=55l = uil?)
We calculated these weights in the E step “— ~ —
Rt = P(y; = ilx;, 0 1)

Joint distribution is simple

M step At iteration t, maximize function Q in 0%

1
Q(ufl6" 1) o Z R 520175 = B
t—1 t
ag(uzwt 1)—0:> ZR (zn — pi) =0
=1
(4 i Rt-1 P(y; —z\x ot— 1)
My — W4T 5 — LJ J
i = 33 where w; ;1:15, Z L P(y=ilz;,00-1)

Equivalent to updating cluster centers in K-means 40

Summary

E-step
Compute “expected” classes of all datapoints for each class
1 t—1
exp(—sislle; — pt 2w
1 t—1
Sie1 exp(—5ozlley — py [12)m

P(y; = ilz;, 0=

In K-means “E-step” we do hard assignment. EM does soft assignment

M-step

Compute Max. like p given our data’s class membership
distributions (weights)

P(y;=ilz;,0' 1)
Z?:l P(y£:é|:r:g,9f*1)

n
t o
M = Z Ws5Tj5 where wj =
j=1

Iterate. Exactly the same as MLE with weighted data.

After 1st iteration

After 2" jteration

After 31 jteration

After 4th jiteration

/ f.“l ,““

‘ =0 331 .
=0, 288
o 0 x.

_/f

After 5th iteration

After 6th iteration

After 20t iteration

General EM - Frequentist

Notation
Observed data: D = {x1,...,Zn}
Unknown variables: Y
For example in clustering: v = (y1,...,yn)
Paramaters: ()
For example in MOG: 0 = [[1, ... s UK, Tl e e o s TRy 21y v v+ 5 2K

Goal: 0, = arg max log P(D|#)

General EM - Bayesian

Notation

Observed data: D = {x1,...,Zn}

Unknown variables: Y

For example in clustering: v = (y1, ..., yn)
Paramaters: ()

Prior: P(0)

Goal: 0, = arg max log P(D|0)|+ log P(0)

Goal: mngP(XW)

log p(X16) = logZp X, Z|6) Z]DgZp (zi,z; = k|0)
q(zi = k‘lﬂ‘a
= lo plxi, z; = k|6
=2 %ZQ(ZE_HTE) 9)

_ ZIDQZQ(% - k\rg)p(T? zi = kl|0)

(z; = k|z;)
p(wi, 2 = k|0)
}ZZQ 7 = Klwi)log = - S

p(ﬂ‘a\ff p(zilzi, 0)
qu 2:'-'"EJ|G'“?- zz_k|ﬂ11)

1= F(M)

Goal: mglxp(mX)

logp(X,0) = logZp(X, Z,0)
logZp(X Z\0) —|—Zlogp (6x)
—ZlogZp Ti, 2 = k\ﬁ —G—Z]c;gp (0x)

q(z Hﬂ‘a}
R

(';rE zi = kl|@)
= log i = klz;)
2 log)_alai = Kla)= ooy +

k|0)

_ (Tl 2 =k
>ZZ 2 = klzi)l o = Klz)

= F(@ﬂ 9)

Z 2 q(zi = k|z; p(z;i__ﬁlg)ﬂ) + Zlogp(ﬁk)

==Y Dir(q(zi|z:)||[P(zi]x:,0)) + log P(x|0) [+ > log p(6i)
;

1

* E-Step: Maximize over g keeping @ fixed

¢! = argmax F(q, 0" Y) = p(z]z;, 017 D)
q

« M-Step: Maximize over § keeping g fixed

(t) _ (t) gy — (t) |
¢"") = argmax F(q'"),0) = arg max Zk: Z a5, log p(w;|0%) + log p()

MLE or MAP on weighted data!

Theorem: During the EM algorithm the marginal likelihood is not decreasing!
p(X[00~D) < p(X|6™)

Other Examples Hidden Markov Models

B 6

Observed data: D = {z1,.

Unknown variables: ¥y = (y1, ... ayn)
Paramaters: ¢ 0=[r1,...,7K, A, B]
Initial probabilities: P(z1 =i) =m;, i =1,..., K
Transition probabilities: P(y;41 = jlyr =) = A

Emission probabilities: P(z;41 =I|lzy =i) = B

Goal:

0, = arg max log P(D|#) = arg max log P(z1,...
0 T A,B

’ :C’”JJS@)

Chains

p(x;0) = p(zo; 0 Hp Tit1|Ti;0) —_ — —_—
Transition Matrices x0 x1 X2
0 |1 0 |1 0

x0O [0 (04 (x1 [0 (0.2 (0.1 |x2 |0 (0.8 |05 |x3 |0 |O

1 0.6 1 (0.8 |0.9 1 (0.2 |0.5 1 |1

Unraveling the chain

p(z1) = ZP (1]|z0)p(z0) <= m1 = Ilos1m0

E :p $2|$1 4=)' mo = 111 _yomy = 111 ,ollp g

Chains

p(x;0) = p(zo; 0 H p(Tiy1|zi;0)

e Transition matrlces

x0

e —
x0 x1

0 1 0 1

0.2 [0.1 | x2 |0 0.8 |0.5 | x3
0.8 |0.9 1 0.2 |0.5

0 04 |x1 |0
1 0.6 1
x0 =1[0.4; 0.6];

Pil =[0.2 0.1; 0.8 0.9];
Pi2 =[0.8 0.5; 0.2 0.5];
Pi3 =1[01;1 0];

x3 =Pi3* Pi2 * Pil * x0 =

[0.45800; 0.54200]

Markov Chains

e First order chain — — —_—

p(X) = p(zo) HP($i+1|$i)

*Second order o< < o<

p(X) — p($01 3'51) HP(%H |$z', 3:1’,—1)

Chains

n—1
p(z;0) = p(zo;) | [p(itales; 6) @—*@—*@—*@
=1

,‘_

Chains

n—1
p(z;0) = p(z0; 0) | [p(xitalzi; 0) — — .
1=1

not needed for directed graphs that
are already normalized +x

... but good to know ...

1($n—1)

o

-~
:=7'n.—2(33'n.—2)

Chains

p(z1..n—1]zn;) = p(zol0) | | p(mit1]zs;6)

pailen) = @) S]] p@salz)

Tiy1.--Lp—1 j—’i

=li(@i)) mem)p(mnm) Pk -

Tiy1..-Tp—1 J=1

=Tn— l(mn 1)

= li(z:i)) Hp (zj+1l75) Y P(@n-1|Tn—2)rn—1(Tn-1)

Tit1..-Lp—2 J=1 m'n 1

~
-:Tn—Z(mn—2)

Chains

(330: H p $z+1|$z:

e Forward recursion

lo(xq) := p(xg) and I;(— Z li—1(xi—1)p(xi|ri_1)

ri—1
e Backward recursion

rn(Tn) ;=1 and ri(x;) := Z rit1(Tir1)p(xiv1|T;)

e Marginalization & conditioning Titl
p(z;) = lij(z;)ri(z;)
p(z)
r_;| ;) =
p(z—i|z;) ()

O

P(Cﬂz‘aﬁ?iﬂ) = i($i)p($i+1|$i)7‘i($z‘+1)

Chains

* Send forward messages starting from left node

i _—1—4 :I:z Zmz 2—1—1 :I:z l)f(mi—lami)
ri—1

* Send backward messages starting from right node

Miit1-i(Ti) = Z Myit2—i+1(Tit1) f(Ti, Tit1)

Ti41

Example - inferring lunch

current

CH B
4 NS L .
T
RS 57 B
8 “ul S
L e

0.8

* Initial probability
p(x0=t)=p(x0=b) = 0.5

L || * Stationary transition matrix

* On fifth day observed at Tazza
d’oro p(x5=t)=1

* Distribution on day 3

_ eft messages to 3
Right messages to 3

Renormalize

Example - inferring lunch

current > Pi = [0.9, 0.2; 0.1 0.8]

P S

0.90000 0.20000
0.10000 0.80000
> 11 = [0.5;, 0.57;
> 13 = Pi * Pi * 11

0.58500
0.41500
> r5 = [1; 0];
> r3 = Pi' * Pi' * r5

0.83000
s | 0.34000
0.1 0.8 > (13 .* r3) / sum(l3 .* r3)
/3 ans =
0.77483
0.22517

Generalizing

discrete discrete continuous
discrete continuous continuous
Mixture model Mixture model Factor analysis
e.g.. mixture of multinomials e.g., mixture of Gaussians
--- --- “‘
() () () - ()) 0 -) & & - &
HMM HMM State space model
(for discrete sequential data, e.g., text) (for continuous sequential data,

e.g.. speech signal)

State Space Model

e A sequential FA or a continuous state HMM

e e X, = Ax,_; +Gw,
t @ Ye =X +V,

w, ~ 4 (0,0), v, ~#(0.R)
W ® ®-® oo

This is a linear dynamic system.

e |n general,
X, = f(x;) +Gw,

Y: = 8(X,;)+V,

where fis an (arbitrary) dynamic model, and g is an (arbitrary)
observation model

Markov Chains

Markov chain:

P(Xt—|-].|XLa R aXI) — P(X?‘—I-ll‘Xt)

Homogen Markov chain:

P(X;41|X¢) is invariant for all ¢.

Definitions

O Assume that the state space is finite:
X =1{1,...,k}.
O 1-Step state transition matrix:
Tij = P(Xi41 = jl Xy = 1)
Lemma: The state transition matrix is stochastic:

 t-Step state transition matrix: i T’?:j
Qij = P(Xpqt = 1 Xp, = 1)

Lemma:
P(Xjqt = j| X = 1) = Qi = [Ty, V(k,14,5)

Limit behaviour

O 1 O
T=|0 0.1 0.9
0.6 04 O

If the probability vector for the initial state is u(x(l)) = (0.5,0.2,0.3)
it follows that [,L(:U(l))T = (0.2,0.6,0.2)

and, after several iterations (multiplications by 7°)

M(m(l))Tt — p(z) = (0.22,0.41,0.37) stationary distribution
no matter what initial distribution p(x!) was.

022 0.41 0.37 The chain has forgotten its past.

0.22 0.41 0.37
T =
0.22 0.41 0.37

26

Definition: [stationary distribution, invariant distribution]

The distribution 7 = (x1,...,m) is stationary distribution
if m;, >0V, > ;m =1, and 7T = .

Theorem:

ml = .

Q xis the left eigenvector of the matrix 7 with eigenvalue 1.

A The Perron-Frobenius theorem from linear algebra tells us that the
remaining eigenvalues have absolute value less than 1.

O The second largest eigenvalue, therefore, determines the rate of
convergence of the chain, and should be as small as possible.

s maximization (always) good?

p(0|X) o p(X|6)p(6)

0.5
0.45
0.4
0.351
£
£ 0.3+
a
i
0.25 1
0.271
0.15 1
0.1

PO
PO

Mean

Sampling

 Keyidea
 Want accurate distribution of the posterior
 Sample from posterior distribution rather than
maximizing it
* Problem - direct sampling is usually intractable
* Solutions
 Markov Chain Monte Carlo (complicated)
* Gibbs Sampling (somewhat simpler)

z ~ p(z|z’) and then z’' ~ p(z'|x)

Gibbs sampling

* Gibbs sampling:
* [n most cases direct sampling not possible
* Draw one set of variables at a time

— (b,g)'draW p(rg)
= e x| (8 -drawp(g,.)
e i o G i

P45 005 | ba)-crawelb)

2o foos Joas |

Gibbs Sampling

@ The basic idea is to split the multidimensional @ into blocks
(often scalars) and sample each block separately, conditional
on the most recent values of the other blocks

@ The beauty of Gibbs sampling is that it simplifies a complex
high-dimensional problem by breaking it down into simple,
low-dimensional problems

Gibbs Sampling

@ Formally, the algorithm proceeds as follows, where 6 consists
of k blocks 6,605, ...,0: at iteration (),

e Draw 9§t+1) from
p(611687 65, .. 6\1))
e Draw Qétﬂ) from

(02|65 68 60)
@ ...

@ This completes one iteration of the Gibbs sampler, thereby
producing one draw 8(**1); the above process is then repeated

many times
@ The distribution p(91|9§),9§t), . ,6’,5:5)) is known as the full
conditional distribution of 6,

Gibbs sampling for clustering

Gibbs sampling for clustering

random
initialization

Gibbs sampling for clustering

sample cluster
labels

Gibbs sampling for clustering

resample
cluster model

Gibbs sampling for clustering

resample
cluster labels

Gibbs sampling for clustering

resample
cluster model

Gibbs sampling for clustering

resample
cluster labels

Gibbs sampling for clustering

resample
cluster model e.g. Mahout Dirichlet Process Clustering

Inference Algorithm # Model

Corollary: EM # Clustering

... but some algorithms and models are good match ...

Reminder on Kernels

* Remember Kernels are nothing but implicit
feature maps

¢d: X — RY

e Gram Matrix
o Gij=K(xi,zj) = (0(xi),0(x;)) Vi,jel...n

* of a set of vectors x; ... X, in the inner product space
defined by the kernel K

 Gram Matrix is always positive definite

Gaussian Process

Correlated Observations ,
Assume that the random variables ¢t € R", ¢ € R" are
jointly normal with mean (u, ¢') and covariance matrix K

Ll t—p [Ky K™ t—
t,t' —— .
p() X €exXp (2 |:tl _ luf] [KH! Kt’t’ tl . MI
Inference
Given t, estimate t' via p(t'|t). Translation into machine
learning language: we learn ¢’ from .
Practical Solution

Since /|t ~ N(ji, '), we only need to collect all terms in
p(t,t’) depending on t’ by matrix inversion, hence

K =Ky — KK 'Ky and i = ¢/ + K, [K_ (t - ”)l

mdependent of t/
Carnegie Mellon University

Handbook of Matrices, Lutkepohl 1997 (big timesaver)

Additive Noise

Indirect Model
Instead of observing t(x) we observe y = t(z) + £, where
¢ iIs a nuisance term. This yields

p(V10) = [T plultn(eX)d

where we can now find a maximum a posteriori solution
for ¢ by maximizing the integrand (we will use this later).
Additive Normal Noise

® If £ ~ N(0,0?) then y is the sum of two Gaussian ran-
dom variables.
® Means and variances add up.
y ~ N(u, K +0°1).

Carnegie Mellon University

Posterior is also Gaussian

Covariance Matrices
® Additive noise

K = Kkemel + 021
® Predictive mean and variance
R' — Kt/t/ — Kt—lt—!ththtl and [1 — Kt—tl—thglt
With Noise
~ —1
K = Kt/tf -+ 0'2]_ — Kt_;' (Ktt SIS 0'21) Ktt’

~ —1
and fi = i/ + Ky | (Ku +0%1) " (y = p)]

Optimization

o Convexity
@ Convex Sets

@ Convex Functions

e Unconstrained Convex Optimization
@ First-order Methods
@ Newton’s Method

e Constrained Optimization
@ Primal and dual problems
@ KKT conditions

Copied from: Xuezhi Wang

Convex Sets

@ Definition
For x, x" € X it follows that Ax + (1 — \)x" € X for A € [0,1]
@ Examples
Empty set (), single point {xy}, the whole space R"
e Hyperplane: {x | a’ x = b}, halfspaces {x | a'x < b}
e Euclidean balls: {x | ||x — x¢||2 < r}
e Positive semidefinite matrices: S = {A < S"|A = 0} (8" is
the set of symmetric n x n matrices)
@ Convex Set C,D
@ Translation {x + b | x € C}
@ Scaling {\x | x € C}
@ Affine function {Ax + b | x € C}
@ Intersection Cn D
@ SetsumC+D={x+y|xeC,yeD}

Copied from: Xuezhi Wang

Gradient Descent

given a starting point x € domf.
———) repeat
4 1. Ax := —Vf(x)
2. Choose step size t via exact or backtracking line search.
3. update. x := x + tAx.
Until stopping criterion is satisfied.

@ Key idea

e Gradient points into descent direction
e Locally gradient is good approximation of objective function

Copied from: Xuezhi Wang

Newton’s Method

Goal: ¢ R — R
¢(z*) =0
=7

Linear Approximation (15t order Taylor approx):

o(z + Ar) = ¢(z) + ¢'(z) Az + o(|Az)

MEGL;GAmE
¢'(x’*} =0
Therefore, 0 ~ ¢($) + (}_5’(:13)&:13
a1 AL M -2),
T ll==lll/Nlp! === 50
_ ¢(z)

Copied from: Prof Barnabas

Newton’s Method

f:R" — R, f is differentiable.
min
wER”lf(x)
We need to find the roots of Vf(x) = 0,
Vf:R*" - R"

Newton system: Vf(z) + V2f(z)Az = 0y,

Newton step: Ar = x4 1 — 2 = —[V2f(2)] 71V f(2)

Iterate until convergence, or max number of iterations exceeded

Copied from: Prof Barnabas

Duality

Primal problem:
min f(z)
subject to h;(x) <0,i=1,...,m

Lagrangian:
L(z,u) = f(z) + Zugh%(x)
i=1

where v € R™ and u > 0.
Lagrange dual function:

= in L
g(u) = min L(z,u)

Back to Optimization

» A typical machine learning problem has a penalty/regularizer
+ loss form

w

1 n
[F — - v Vi i)
min F(w) = g(w) + - ;_1 f(w; yi, xi)

xi,w € RP, y; € R, both g and f are convex
» Today we only consider differentiable f, and let g = 0 for
simplicity

» For example, let f(w;y;, x;) = — log p(yi|xi, w), we are trying
to maximize the log likelihood, which is

1 n
max — 3 _log p(yilxi, w)
i=1

Gradient Descent

» choose initial w(?), repeat Two dimensional

example:
Wt — (1) _ N - VF(W(t))

until stop

> 7 Is the learning rate, and

VF(wlt)) = % > V(w9 yi, %)

> How to stop? ||w(ttD) — w(|| < e or
IVF(w)] < e

Stochastic Gradient Descent

> We name 1Y~ f(w;y;, x;) the empirical loss, the thing we
hope to minimize is the expected loss

f(w) =]Ey;,X;f(W?Yi:Xi)

» Suppose we receive an infinite stream of samples (y;, x;) from
the distribution, one way to optimize the objective is

WD = W) — v F(w; e, xe)

» On practice, we simulate the stream by randomly pick up
(yt, x¢) from the samples we have

» Comparing the average gradient of GD %Z, Vu f(w(t); yi, x;)

SGD and Perceptron

» Recall Perceptron: initialize w, repeat

yixi if yi(w,x;) <0
w=w -+ _
0 otherwise

» Fix learning rate n =1, let f(w;y, x) = max(0, —yi(w, x;)),
then
—yixi if yi{w, x;) <0

Vuwf(w;y,x)=
wh(w:y,x) {0 otherwise

we derive Perceptron from SGD

